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Chapter 14

Computer Music Futures
Topics Discussed: Computer Accompaniment, Style Classification, Music
Alignment, Human-Computer Music Performance

14.1 Introduction
Let’s take a step back from details and technical issues to think about where com-
puter music is heading, and maybe where music is heading. This chapter is a
personal view, and I should state at the beginning that the ideas here are highly
biased by my research, which is in turn guided by my own knowledge, interests,
abilities, and talents.

I believe that if we divide computer music into a “past” and “future” that the
“past” is largely characterized by the pursuit of sound and the concept of the in-
strument. Much of the early work on synthesis tried to create interesting sounds,
model acoustic instruments or reproduce their sounds, and build interfaces and
real-time systems that could be used in live performance in the same way that tra-
ditional musicians master and perform with acoustic instruments. The “future,”
I believe, will be characterized by the model of the musician rather than the in-
strument. The focus will be on models of music performance, musical interaction
among players, music described in terms of style, genre, “feel,” and emotion rather
than notes, pitch, amplitude, and spectrum. A key technology will be the use of
AI and machine learning to “understand” music at these high levels of abstraction
and to incorporate music understanding into the composition, performance, and
production of music.

Much of my research has been in the area of music understanding, and in
some sense, the “future” is already here. Everything I envision as part of the
future has some active beginnings well underway. It’s hard to foresee the future
as anything but an extension of what we already know in the present! However,
I have witnessed the visions of others as they developed into reality: high-level
languages enabling sophisticated music creation, real-time control of sound with
gestural control, and all-digital music production. These visions took a long time
to develop, and even if they were merely the logical progression of what was
understood about computer music in the 70s or 80s, the results are truly marvelous
and revolutionary. I think in another 20 or 30 years, we will have models of
musicians and levels of automatic music understanding that make current systems
pale by comparison.

The following sections describe a selection of topics in music understanding.
Each section will describe a music understanding problem and outline a solution
or at least some research systems that address the problem and show some possi-
bilities for the future.
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14.2 Computer Accompaniment
A basic skill for the musically literate is to read music notation while listening
to a performance. Humans can follow quite complex scores in real-time with-
out having previously heard the music or seen the score. The task of Computer
Accompaniment is to follow a live performance in a score and to synchronize a
computer performance. Note that the computer performs a pre-composed part, so
there is no real-time composition involved but rather a responsive synchroniza-
tion. There are now many accompaniment systems, at least in the literature, as
well as a few commercial systems.

Accompaniment systems have two basic parts. First, a score-follower matches
an incoming live performance signal (usually either audio or data taken directly
from a piano-like keyboard using the MIDI protocol) to a machine-readable note-
list or score. Second, an accompaniment algorithm uses score location to estimate
tempo, position, and decide how to schedule upcoming notes or sound events in
the accompaniment score.

The score-following component of Computer Accompaniment can be dis-
sected further into two sub-tasks as shown in Figure 14.1.

Figure 14.1: Score following block diagram.

14.2.1 Input Processing
The first task, the Input Processor, translates the human performance (which may
be detected by a microphone or by sensors attached to keys) into a sequence of
symbols, which typically correspond to pitches. (In some systems, matching is
done according to spectra or even some latent vector constructed through ma-
chine learning.) When converting microphone input to symbols, the pitch must
be estimated and quantized to the nearest semitone, and additional processing is
useful to reduce the number of false outputs that typically arise.

14.2.2 Matching
The Matcher receives input from the Input Processor and attempts to find a cor-
respondence between the real-time performance and the score. The Matcher has
access to the entire score before the performance begins. As each note is reported
by the Input Processor, the matcher looks for a corresponding note in the score.
Whenever a match is found, it is output. The information needed for Computer
Accompaniment is just the real-time occurrence of the note performed by the hu-
man and the designated time of the note according to the score.

Since the Matcher must be tolerant of timing variations, matching might be
performed on sequences of pitches only. This decision throws away potentially
useful information, but it makes the matcher completely time-independent. One
problem raised by this pitch-only approach is that each pitch is likely to occur
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many times in a composition. In a typical melody, a few pitches occur in many
places, so there may be many candidates to match a given performed note.

The matcher described here overcomes this problem and works well in prac-
tice. Many different matching algorithms have been explored, often introducing
more sophisticated probabilistic approaches, but my goal here is to illustrate one
simple approach. The matcher is derived from the dynamic programming algo-
rithm for finding the longest common subsequence (LCS) of two strings. Imagine
starting with two strings and eliminating arbitrary characters from each string un-
til the the remaining characters (subsequences) match exactly. If these strings
represent the performance and score, respectively, then a common subsequence
represents a potential correspondence between performed notes and the score (see
Figure 14.2). If we assume that most of the score will be performed correctly,
then the longest possible common subsequence should be close to the “true” cor-
respondence between performance and score.

Figure 14.2: Illustration of the longest common subsequence between a performed
sequence and a score sequence.

In practice, it is necessary to match the performance against the score as the
performance unfolds, so only an initial prefix of the entire performance is avail-
able. This causes an interesting anomaly: if a wrong note is played, the LCS
algorithm will search arbitrarily far ahead into the score to find a match. This will
more than likely turn out not to be the best match once more notes are played,
so the algorithm will recover. Nevertheless, being unreasonably wrong, even mo-
mentarily, causes problems in the accompaniment task. To avoid skipping ahead
in the score, the algorithm is modified to maximize the number of corresponding
notes minus the number of notes skipped in the score. Other functions are possi-
ble, but this one works well: the matcher will only skip notes when their number
is offset by a larger number of matching notes.

The Matcher is an interesting combination of algorithm design, use of heuris-
tics, and outright ad-hoc decisions. Much of the challenge in designing the matcher
was to model the matching problem in such a way that good results could be ob-
tained efficiently. In contrast to the other accompaniment systems emerging at
the same time, this matcher designed by the author could easily match sequences
of 20 or more pitches in real time, even on very slow microprocessors of the
day, making it very tolerant of errors. (Consider a naive algorithm that tests all
different ways to align performed notes to score notes. The number of possible
alignments grows exponentially with the number of notes, so sequences of length
20 performed notes plus 20 score notes have about 1012 possible alignments, and
even modern computers cannot do this in real time.)

Polyphonic matchers have also been explored. One approach is to group indi-
vidual notes that occur approximately simultaneously into structures called com-
pound events. A single isolated note is considered to be a degenerate form of com-
pound event. By modifying the definition of “matches,” the monophonic matcher
can be used to find a correspondence between two sequences of compound events.
Another approach processes each incoming performance event as it occurs with
no regard to its timing relationship to other performed notes. It is important in this
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case to allow notes within a chord (compound event) in the score to arrive in any
order. (Note that the “pure” LCS algorithm disallows reordering.) The resulting
algorithm is time-independent.

The Matcher performs a fairly low-level recognition task where efficiency is
important and relatively little knowledge is required. When matches are found,
they are output for use by an Accompaniment Performance subtask, which uses
knowledge about musical performance to control a synthesizer. Several systems
have been implemented based on these techniques, and the results are quite good.
(You can find a video demonstration at www.cs.cmu.edu/~rbd/videos.html.)

The Matcher has also been extended to handle trills, glissandi, and grace notes
as special cases that would otherwise cause problems, and this version has been
used successfully for several concerts. A commercial Computer Accompaniment
system, SmartMusic, is derived directly from the author’s work and has been used
mainly for music education since the 1990’s. Other accompaniment systems in-
clude Tonara, Antescofo, Music Plus One, and the author’s Accomplice.

14.3 Style Classification
Many computer music applications can benefit from higher-level music under-
standing. For example, interactive performance systems are sometimes designed
to react to higher-level intentions of the performer. Unfortunately, there is often
a discrepancy between the ideal realization of an interactive system, in which the
musician and machine carry on a high-level musical discourse, and the realiza-
tion, in which the musician does little more than trigger stored sound events. This
discrepancy is caused in part by the difficulty of recognizing high-level character-
istics or style of a performance with any reliability.

Our experience has suggested that even relatively simple stylistic features,
such as playing energetically, playing lyrically, or playing with syncopation, are
difficult to detect reliably. Although it may appear obvious how one might detect
these styles, good musical performance is always filled with contrast. For exam-
ple, energetic performances contain silence, slow lyrical passages may have rapid
runs of grace notes, and syncopated passages may have a variety of confusing
patterns. In general, higher-level musical intent appears chaotic and unstructured
when presented in low-level terms such as MIDI performance data.

Machine learning has been shown to improve the performance of many per-
ception and classification systems (including speech recognizers and vision sys-
tems). This section describes a machine-learning-based style classifier for music.
Our initial problem was to classify an improvisation as one of four styles: lyrical,
frantic, syncopated, or pointillistic (the latter consisting of short, well-separated
sound events). We later added the additional styles: blues, quote (play a familiar
tune), high, and low. The exact meaning of these terms is not important. What
really matters is the ability of the performer to consistently produce intentional
and different styles of playing at will.

The ultimate test is the following: Suppose, as an improviser, you want to
communicate with a machine through improvisation. You can communicate four
different tokens of information: lyrical, frantic, syncopated, and pointillistic. The
question is, if you play a style that you identify as frantic, what is the probability
that the machine will perceive the same token? By describing music as a kind
of communication channel and music understanding as a kind of decoder, we can
evaluate style recognition systems in an objective scientific way.

It is crucial that this classification be responsive in real time. We arbitrarily
constrained the classifier to operate within five seconds.
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Figure 14.3: Training data for a style recognition system is obtained by asking
a human performer to play in different styles. Each style is played for about 15
seconds, and 6 overlapping 5-second segments or windows of the performance are
extracted for training. A randomly selected style is requested every 15 seconds for
many minutes to produce hundreds of labeled style examples for training.

Figure 14.3 illustrates the process of collecting data for training and evaluating
a classifier. Since notions of style are personal, all of data is provided by one
performer, but it takes less than one hour to produce enough training data to create
a customized classifier for a new performer or a new set of style labels. The data
collection provided a number of 5-second “windows” of music performance data,
each with a label reflecting the intended style.

The data was analyzed by sending music audio from an instrument (a trum-
pet) through an IVL Pitchrider, a hardware device that detects pitch, note-onsets,
amplitude, and other features and encodes them into MIDI. This approach was
used because, at the time (1997), audio signal processing in software was very
limited on personal computers, and using the MIDI data stream was a simple way
to pre-process the audio into a useful form. We extracted a number of features
from each 5-second segment of the MIDI data. Features included average pitch,
standard deviation of pitch, number of note onsets, mean and standard deviation
of note durations, and the fraction of time filled with notes (vs. silence).

Various style classifiers were constructed using rather simple and standard
techniques such as linear classifiers and neural networks.

While attempts to build classifiers by hand were not very successful, this data-
driven machine-learning approach worked very well, and it seems that our par-
ticular formulation of the style-classification problem was not even very difficult.
All of the machine-learning algorithms performed well, achieving nearly perfect
classification in the 4-class case, and around 90% accuracy in the 8-class case.
This was quite surprising since there seems to be no simple connection between
the low-level features such as pitch and duration and the high-level concepts of
style. For example the “syncopation” style is recognizable from lots of notes on
the upbeat, but the low-level features do not include any beat or tempo informa-
tion, so evidently, “syncopation” as performed happens to be strongly correlated
with some other features that the machine learning systems were able to discover
and take advantage of. Similarly, “quote,” which means “play something famil-
iar” is recognizable to humans because we might recognize the familiar tune being
quoted by the performer, but the machine has no database of familiar tunes. Again,
it must be that playing melodies from memory differs from free improvisation in
terms of low-level pitch and timing features, and the machine learning systems
were able to discover this.

You can see a demonstration of this system by finding “Automatic style recog-
nition demonstration” on www.cs.cmu.edu/~rbd/videos.html. Since this work was
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published, machine learning and classifiers have been applied to many music un-
derstanding problems including genre recognition from music audio, detection of
commercials, speech, and music in broadcasts, and the detection of emotion in
music.

14.4 Audio-to-Score Alignment
The off-line version of score following is called audio-to-score alignment. Off-
line means that we do not need to output alignment or location data in real-time.
Instead, we get to observe the entire audio stream and the entire score before
computation begins. This means that we can look ahead into the data for both
audio and score. As a result, ambiguous information can be resolved by finding
clearer matches happening both earlier and later.

This turns out to be a very big advantage. Earlier we said that computer accom-
paniment systems work in real-time and perform quite well, which is true, but that
is partly because accompaniment systems tend to be built for monophonic instru-
ments (those that produce one note at a time). Dealing with polyphony (multiple
notes) or something as complex as an orchestra or even a popular music recording
poses a very challenging problem to detect notes accurately. Our ability to do real-
time score following is greatly diminished when the input consists of polyphonic
music audio.

These problems are compensated for by the additional power of using look-
ahead in a non-real-time audio-to-score alignment system. This section outlines
the basic principles that are used and then presents some applications and oppor-
tunities for this technology.

14.4.1 Chroma Vectors and Similarity
In a monophonic score follower or polyphonic MIDI score follower, we normally
use note pitch as the “feature” that we match between performance and score.
With polyphonic audio, extracting pitches is difficult and unreliable, but another
feature, called the chroma vector, has been shown to be quite useful and robust.
The chroma vector is related to the spectrum. You might think the spectrum would
be a good feature itself since it requires very little interpretation and certainly con-
tains all the necessary information about the performance. The problem with the
spectrum is that just by playing a little louder (brighter) or changing the micro-
phone location, we can get fairly large shifts in the spectrum. Also, to align audio
recordings to symbolic representations, we would need a way to determine the
spectrum from symbolic representations, i.e. we need to synthesize a band or or-
chestra in a way that accurately reproduces the spectrum of the recorded version.
Our symbolic descriptions do not contain enough information and our synthesis
methods are not good enough to reproduce spectra.

The chroma vector divides the spectrum into semitones, i.e. we look at fre-
quency bands for C1, C#1, D1, ... B1, C2, C#2, D2, ... B2, and all the way to the
top octave. Then, we take all the magnitudes in the spectrum for pitch class C,
namely the frequency bands for all the octaves of C: C1, C2, C3, etc., and add the
magnitudes together to get one number we will call C. Then we do the same for
C-sharp: C#1, C#2, C#3, etc., and then D1, D2, D3, etc., and all the other pitch
classes. The result is a vector of 12 elements: C, C#, D, D#, E, F, F#, G, G#, A,
A#, B. To finish processing, the chroma vector is often normalized to have a sum-
of-squares magnitude of one so that scaling the amplitude of the source signal has
no effect on the chroma vector.
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You can think of chroma vectors as a summary or projection of the detailed
spectrum into a simpler representation. A sequence of chroma vectors over time
is analogous to a spectrogram and we call it a chromagram.

Because this projection averages a lot of information and totally collapses oc-
tave information, it tends to be a robust indicator of melody and harmony, but at
the same time, chroma vectors tend to have little to no information about timbre,
so you get roughly the same chroma vector whether you play a chord on a piano
or with an orchestra or synthesize the sound.

14.4.2 The Similarity Matrix and Dynamic Time Warping
Now that we have a robust representation of polyphonic music performances, we
can compare a performance to a score. To get a chromagram from a score, we can
either synthesize the score and compute the chromagram from audio, or we can
make a direct “chroma-like” representation by simply representing any note with
pitch class C as the vector 100000000000, C# as 010000000000, and so on. We
could scale these vectors according to loudness indicated in the score. For chords,
we just add the vectors from the notes of the chord. After normalizing the sums,
we get something compatible with and similar to chromagrams.

To compare a performance chromagram to a score chromagram, we typically
construct a full “similarity matrix” that compares every chroma vector in the per-
formance to every chroma vector in the score. (Actually, we only have to compute
1/2 of this matrix since we use a commutative similarity function.) One way to
compare vectors x and y is to use their Euclidean distance (distance is the oppo-
site of similarity, so when we say “maximize similarity” it is equivalent to saying
“minimize distance”).

distance(x,y) =

√
n

∑
i=1

(xi − yi)2

Figure 14.4 illustrates the similarity matrix comparing a MIDI-based chromagram
(horizontal) to a chromagram of the recording of the same song by the Beatles
(vertical). Notice that there is a dark narrow path near the diagonal from lower left
(0, 0) to the upper right. Since dark represents high similarity (smaller distance),
this is the path where the MIDI-based chromagram best aligns with the score-
based chromagram.

To find the alignment path automatically, we look for a path from lower left
corner to upper right corner in the similarity matrix that minimizes the sum of
distances along the path. This is a standard problem called dynamic time warping
and uses the same general dynamic programming approach used in the longest
common subsequence (LCS) problem. Once the best path is computed, we have a
mapping from each score position to the corresponding score location.1

14.4.3 Applications of Audio-to-Score Alignment
One application of audio-to-score alignment is to make navigation of audio easier.
Figure 14.5 shows an experimental version of Audacity that was extended by the
author to “warp” the tempo of a MIDI file to align to an audio recording. This
is not simply a synthesized version of the MIDI file. The MIDI file came from a

1Technically, the MIDI file used in this example is essentially a note list and not a score in the sense
of common practice music notation. It might be better to say this is signal-to-symbol alignment, but
symbol is a vague term, so it is common to use score to refer to any representation of notes or sound
events with some indication of timing and properties such as pitch.
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Figure 14.4: A similarity matrix illustrating data used for audio-to-score align-
ment. Darker means more similar.

MIDI library, and the audio is a commercial recording of a Haydn symphony. By
aligning these two different representations, we can immediately see much more
of the music structure. For example, if one were looking for the places where the
whole orchestra plays a long note together, it is much easier to find those spots
with the MIDI file as a reference.

Figure 14.5: Alignment of MIDI in a piano-roll display to audio in an experimen-
tal version of the Audacity audio editor.

In studio recordings of new music, scores are often prepared using music no-
tation software, so it is often the case that machine-readable common practice
notation is available. In principle, that information could be used to display music
notation to aid navigation in a future audio editor.

Alignment has also been used in systems to identify “cover songs,” which are
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versions of popular songs performed by someone other than the original recording
artists. Another interesting possibility is to use alignment to provide meta-data or
labels for audio. This data can then be used to train machine learning systems to
identify chords, pitches, tempo, downbeats and other music information.

14.5 Human-Computer Music Performance
Another interesting application for computers in music is live performance of pop-
ular music such as rock, jazz, and folk music. By and large, “popular” music has a
definite form and steady tempo, but players often have the possibility to interpret
the score rather freely. A consequence is that players synchronize more by beat
than by note-by-note score following. In fact, many times there is no note-level
score for guitars or drums, and even vocalists sing expressively without strictly
following notated rhythms.

Computers are often used in such music, but computers play sequences at
a strict tempo, and human musicians are forced to play along and synchronize
to the computer (or even a digital audio recording, sometimes referred to as a
backing track). This type of performance is restrictive to musicians, who often
end up focused more on keeping with the computer than playing musically, and it
is usually not enjoyable to have a completely inflexible tempo.

As an alternative, imagine a system where computers could follow humans,
much like in computer accompaniment systems, only now with popular beat-
based music. One could imagine a computer using beat-tracking algorithms to
find the beat and then synchronize to that. Some experimental systems have been
built with this model, but even state-of-the-art beat tracking (another interesting
research problem) is not very reliable. An alternative is simple foot tapping using
a sensor that reports the beat to the computer.

In addition to beats, the computer needs to know when to start, so we can add
sensors for giving cues to start a performance sequence. Just as human conduc-
tors give directions to humans—play something now, stop playing, play louder
or softer, go back and repeat the chorus, etc.—we can use multiple sensors or
different gestures to give similar commands to computer performers.

We call this scenario Human-Computer Music Performance (HCMP), with
terminology that is deliberately derived from Human-Computer Interaction (HCI)
since many of the problems of HCMP are HCI problems: How can computers
and humans communicate and work cooperatively in a music performance? The
vision of HCMP is a variety of compatible systems for creating, conducting, cue-
ing, performing, and displaying music. Just as rock musicians can now set up
instruments, effects pedals, mixers, amplifiers and speakers, musicians in the fu-
ture should be able to interconnect modular HCMP systems, combining sensors,
virtual performers, conducting systems, and digital music displays as needed to
create configurations for live performance.

Some of the interesting challenges for HCMP are:

• Preparing music for virtual players: Perhaps you need a bass player to join
your band, but you only have chord progressions for your tunes. Can soft-
ware write bass parts in a style that complements your musical tastes?

• Sharing music: Can composers, arrangers, and performers share HCMP
software and content? How can a band assemble the software components
necessary to perform music based on HCMP?

• Music display systems: Can digital music displays replace printed music?
If so, can we make the displays interactive and useful for cueing and con-
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ducting? Can a band leader lead both human and virtual performers through
a natural music-notation-based interface?

Clearly, music understanding is important for HCMP systems to interact with
musicians in high-level musical terms. What if a band leader tells a virtual mu-
sician to make the music sound more sad? Or make the bass part more lively?
HCMP is an example of how future music systems can move from a focus on
instruments and sounds to a focus on music performance and musical interaction.

14.6 AI and Machine Learning
Nearly every facet of computing and society is affected by recent advances in
artificial intelligence and especially machine learning. Computer Music is cer-
tainly feeling this impact. Some important capabilities achieved with deep neural
networks include:

• source separation, where input music audio is split into multiple tracks with
(relatively) isolated vocals, drums, bass and other components, opening up
many possibilities for analysis, audio processing and production, replacing
tracks, etc.

• audio restoration, where an estimate of the original source is recovered
from audio with artifacts such as background noise, reverberation, distortion
and even dropouts.

• audio mastering, where final touches are applied automatically to music
recordings to achieve overall spectral balance, clarity, dynamics compres-
sion and artificial reverberation. Once an expensive process performed by
experts, automated systems now master millions of songs.

• chord recognition from audio input has become highly accurate.

• singing voice modification and synthesis, a rapidly evolving area, has intro-
duced systems that can replace a singer’s voice with that of another (also
known as singing voice transfer, a subclass of “deep fakes”). Other systems
create singing voices directly from music notation.

• popular song composition and audio production, often refered to using the
ambiguous term music generation, allows users to obtain entire songs in
audio form based on text descriptions and/or lyrics. Although control, cre-
ativity and audio quality are all quite limited as of 2024, the results are
listenable and show great promise, for example, as audio tracks for videos
on social media. The state of the art is improving rapidly.

New capabilities are certain to appear at a rapid pace. These developments are
changing the practice of computer music creation. However, just as synthesizers
and sequencing introduced in the 20th Century did not replace live musicians
but were integrated into many aspects of composition, performance and music
production, we can expect that AI and machine learning will follow a similar
path.

A major shortcoming of neural networks is that they learn from existing data,
whether it be text, images or music. This approach seems unlikely to create inno-
vative music that breaks with tradition (consider Igor Stravinsky, John Cage, Char-
lie Parker, and a host of others). Perhaps breakthroughs in machine learning will
lead to more creative systems. Meanwhile, there are many opportunities to explore
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how performing artists and composers can guide AI systems to achieve human
artistic goals. It seems that incorporating neural networks into real-time music
performance systems is wide-open for exploration, less demanding of corporate-
level computing resources, and tailored to the skills and sensibilities of musicians.

14.7 Summary
Music understanding encompasses a wide range of research and practice with the
goal of working with music at higher levels of abstraction that include emotion,
expressive performance, musical form and structure, and music recognition. We
have examined just a limited selection of music understanding capabilities based
on work by the author. These include:

• computer accompaniment—the computer as virtual interactive and respon-
sive musical accompanist,

• automatic style recognition—the detection of different performance styles
using machine classifiers,

• audio-to-score alignment—the ability to match sounds to symbolic repre-
sentations of music event sequences, and

• Human-Computer Music Performance—an evolving practice of bringing
virtual performers into collaboration with humans in live performance.

All of these tasks rely on new techniques for processing musical information that
we call music understanding. In addition, we took a brief look at the rapidly
evolving capabilities of AI and machine learning technologies for creating music.
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