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Chapter 13

Audio Compression
Topics Discussed: Coding Redundancy, Intersample Redundancy, Psycho-
Perceptual Redundancy, Huffman Coding

13.1 Introduction to General Compression Techniques
High-quality audio takes a lot of space—about 10M bytes/minute for CD-quality
stereo. Now that disk capacity is measured in terabytes, storing uncompressed au-
dio is feasible even for personal libraries, but compression is still useful for smaller
devices, downloading audio over the Internet, or sometimes just for convenience.
What can we do to reduce the data explosion?

Data compression is simply storing the same information in a shorter string of
symbols (bits). The goal is to store the most information in the smallest amount of
space, without compromising the quality of the signal (or at least, compromising
it as little as possible). Compression techniques and research are not limited to
digital sound—–data compression plays an essential part in the storage and trans-
mission of all types of digital information, from word-processing documents to
digital photographs to full-screen, full-motion videos. As the amount of informa-
tion in a medium increases, so does the importance of data compression.

What is compression exactly, and how does it work? There is no one thing
that is “data compression.” Instead, there are many different approaches, each
addressing a different aspect of the problem. We’ll take a look at a few ways
to compress digital audio information. What’s important about these different
ways of compressing data is that they tend to illustrate some basic ideas in the
representation of information, particularly sound, in the digital world.

There are three main principles or approaches to data compression you should
know:

• Coding Redundancy eliminates extra bits used to represent symbols. For
example, computer code generally uses 8-bit characters, but there are less
than 100 different characters, at least for written English. We could use 7
bits per character for an immediate savings of 12.5%, and a variable-length
encoding would be even more efficient.

• Intersample Redundancy looks at how sequences of symbols can be rep-
resented more compactly. For example, a fax machine could send a black-
and-white image as a sequence of bits for black and white, e.g. 1111111000011111100110100000...,
but since there are typically large black and white regions, we can encode
this as the number of 1’s followed by the number of 0’s followed by the
number of 1’s, etc. The same bits could be represented as 7 4 6 2 2 1 1 5 ...,
which is typically much more compact.
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• Psycho-Perceptual Redundancy considers the waste of transmitting infor-
mation that will never be perceived. A 16-bit audio recording contains a
lot of information and detail we cannot hear. Yes, in the worst case, you
really need 16 bits, and yes, in the worst case you really need a frequency
response up to 20 kHz, but a lot of the audio information represented in the
samples is inaudible, and that fact can be used to send less data.

13.2 Coding Redundancy
Let’s look at how these principles are used in audio data compression. Starting
with coding redundancy, we can think of each sample as a “symbol” that must
be represented in bits. In “uncompressed” audio, each sample is encoded as a
number on a linear scale. This is the so-called PCM, or pulse-code modulation
representation.1

Another representation of samples uses a more-or-less logarithmic encod-
ing called µ-law. This representation is not truly logarithmic and instead uses
a floating-point representation with 1 sign bit, 3 exponent bits, and 4 mantissa
bits. The encoding spans a 13-bit dynamic range where the quantization levels are
smaller at low amplitudes. A less common but similar encoding is A-law, which
has a 12-bit dynamic range.

Figure 13.1 shows a schematic comparison of (linear) PCM to µ-law encod-
ing. The tick-marks on the left (PCM) and right (µ-law) scales show actual values
to which the signal will be quantized. You can see that at small signal amplitudes,
µ-law has smaller quantization error because the tick marks are closer together.
At higher amplitudes, µ-law has larger quantization error. At least in perceptual
terms, what matters most is the signal-to-noise ratio. In µ-law, quantization error
is approximately proportional to the signal amplitude, so the signal-to-noise ratio
is roughly the same for soft and loud signals. At low amplitudes, where absolute
quantization errors are smaller than PCM, the signal-to-noise ratio of µ-law is
better than PCM. This comes at the cost of lower signal-to-noise ratios at higher
amplitudes. All around, µ-law is generally better than PCM, at least when you do
not have lots of bits to spare, but we will discuss this further in Section 13.2.2.

Figure 13.1: µ-law vs. PCM. Quantization levels are shown at the left and right
vertical scales. µ-law has a better signal-to-quantization-error ratio at lower am-
plitudes but a higher ratio than PCM at higher amplitudes.

1I’ve always thought PCM was odd terminology. It literally refers to the transmission of binary
codes through pulses—see Patent US2801281A—which misses the point that this is about representa-
tion, not transmission, but since this work came out of a phone company, maybe it is not so surprising
that PCM was viewed as a form of transmission.
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13.2.1 µ-law Implementation
To convert from 8-bit µ-law to PCM, we can treat the µ-law code as an unsigned
integer, from 0 to 255, and store the corresponding PCM value in a table. Then,
translation from µ-law to PCM is a simple table lookup:
ulaw_to_pcm[ulaw_code].

To convert from PCM to µ-law, we could also use a table to map from each
of 216 16-bit PCM values to the corresponding µ-law value. It turns out the low-
order 2 bits of the 16-bit code do not matter, so we can reduce the table size to 214,
and we can use symmetry around zero to reduce the table size to 213 or 8 kB.2

13.2.2 Discussion on µ-law
µ-law is used mainly for telephony where the sound quality is enough for speech
intelligibility, but not good for music. For music, we might consider using more
bits to get lower noise. Studies show that with 16-bit samples, linear is better than
logarithmic encodings, perhaps because quantization noise at 16-bits is so quiet
that you simply cannot hear it. Finally, if you cannot afford 16-bits, you are much
better off looking to other techniques.

µ-law was chosen as an example of coding redundancy. You might say that
µ-law does not actually represent PCM samples, so this is not a true example
of coding redundancy. It all depends on what it is you think you are encoding,
and you could certainly argue that µ-law is based on perceptual principles so it is
really an example of psycho-perceptual redundancy, which we will take up later.

A good example of “pure” coding redundancy is Huffman Coding, where each
symbol is assigned a unique string of bits. Symbols that are very common receive
shorter bit strings, and rare symbols use more bits. In most music audio, low am-
plitude samples are more common than high amplitude samples, which are used
only for peaks in the signal. Analyzing one of my live recordings, I estimated that
the 16-bit samples could be encoded with an average of 12 bits using a variable-
length Huffman Code, which would eliminate much of the coding redundancy in
the linear encoding. We will discuss Huffman Codes later as well.

13.3 Intersample Redundancy
Audio signals also exhibit intersample redundancy, which means that samples
can be predicted from previous samples, so we do not really need all those bits in
every sample. The simplest predictor is to guess that the next sample is the same
as the current one. While this is rarely exactly true, the error is likely to be a small
number.

13.3.1 DPCM – delta PCM
We can encode the error or delta from one sample to the next rather than the full
value of each sample. This encoding, caled DPCM, or delta PCM saves about 1
bit per sample in speech, giving a 6dB improvement in signal-to-noise ratio for a
given bit rate.

Figure 13.2 shows a DPCM-encoded signal using single bit samples. With a
single bit, you can only indicate “go up” or “go down,” so if the signal is constant
(e.g. zero), the samples alternate 1’s and 0’s. Note that when the signal to be

2Of course, you could also do binary search to find the nearest µ-law code using the much smaller
ulaw_to_pcm table, but it is much faster to use direct lookup.
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encoded (the solid line) changes rapidly, the 1-bit DPCM encoding is not able to
keep up with it.

Figure 13.2: DPCM. The solid line is encoded into 1’s and 0’s shown below. The
reconstructed signal is shown as small boxes. Each box is at the value of the
previous one plus or minus the step size.

A DPCM encoder is shown in 13.3. This is a common configuration where the
output (on the right) is fed into a decoder (labeled “Integrate” in the figure). The
decoded signal is subtracted from the incoming signal, providing a difference that
is encoded as bits by the box labeled “Quantize.” In this way, the overall encoding
process drives the error toward zero.

Figure 13.3: DPCM Coder. A reconstructed signal is subtracted from the signal
to be encoded (at left) to decide whether the next output should be up (1) or down
(0).

13.3.2 ADPCM – Adaptive Delta PCM
You can see that the DPCM coder suffers when the input changes rapidly (the
limited step size means that the encoded signal cannot change fast enough) and
when the input does not change at all (the minimum step size introduces error and
noise). In Adaptive Delta PCM (ADPCM), the step size is variable. In the one-bit
case, repeating bits mean the encoded signal is moving too fast in one direction,
so the step size is increased to keep up. Alternating bits mean the encoded signal
is overshooting the target, so the step size is decreased. ADPCM achieves an
improvement of 10-11 dB, or about 2 bits per sample, over PCM for speech.

Figure 13.4 illustrates the action of ADPCM. Notice how the steps in the en-
coded signal (shown in small squares) changes. In this example, the step size
changes by a factor of two, and there is a minimum step size so that reasonably
large step sizes can be reached without too many doublings.

Figure 13.5 shows a schematic of an ADPCM coder. It is similar to the DPCM
coder except repetitions or alternations in the output bits are used to modify the
step size. The step size is also incorporated into the decoder labeled “Integrate,”
which decodes the signal.
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Figure 13.4: ADPCM. The step size is increased when bits repeat, and the step
size is decreased (down to a minimum allowed step size) when bits alternate.

Figure 13.5: ADPCM Coder. This is similar do DPCM, but the step size is variable
and controlled by additional logic that looks for same bits or alternating bits in the
encoded output.

13.3.3 Adaptive Prediction
If the previous sample is a good predictor and helps us to encode signals, why
not use more samples to get even better prediction? A simple Nth-order predictor
forms a weighted sum of previous samples to predict the next sample. If the
weights are adapted, this is called adaptive prediction. The gain is about 3 or 4
dB, or a fraction of a bit per sample, and there is little to be gained beyond 4th- or
5th-order prediction.

13.3.4 DPCM for High-Quality Audio
It might seem that we could replace 16-bit PCM with DPCM. Maybe 12 bits would
be enough to store deltas, or maybe we could get better-than 16-bit quality with
only 16 bits. Unfortunately, to encode any PCM signal with N-bit samples, you
need (N + 1)-bit deltas because the delta must span the entire range of an N-bit
number, plus it needs a sign bit for the direction of change. Thus, DPCM at the
same bit rate cannot be a lossless encoding. In careful listening experiments, PCM
is slightly better than DPCM.

13.3.5 Review
The term PCM refers to uncompressed audio where amplitude is converted to
binary numbers using a linear scale. By coding differently with µ-law and A-
law, we can achieve better quality, at least for low-fidelity speech audio. Using
intersample redundancy schemes such as DPCM and ADPCM, we can achieve
further gains, but when we consider very high quality audio (16-bit PCM), these
coding schemes lose their advantage.
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As we will see in the next section, psycho-perceptual redundancy offers a
better path to high-quality audio compression.

13.4 Psycho-Perceptual Redundancy and MP3
We have seen how coding redundancy and intersample redundancy are used in
compression, especially for speech signals. For high-quality music audio, the
FLAC lossless encoder can compress audio by about 50%, which gives an idea
of the redundancy in PCM. To get well beyond a 2:1 compression ratio, we must
turn to lossy schemes, where the original audio is not preserved, but where the
differences are not perceptible and therefore acceptable in most applications.

13.4.1 Masking and Perceptual Coding
Our auditory system is complex and has some surprising behaviors. First, our ears
act as filter banks, separating frequencies into different channels. There is some
interaction between frequencies so that a loud sound in a channel masks or covers
up soft sounds in adjacent channels. Masking also applies within a channel so that
if you mix soft noise with a loud sound, the noise will be inaudible. This means
that it is not always necessary to encode audio with very low noise. We can get
away with a lot of quantization as long as there is sound to mask the quantization
noise.

Another form of masking occurs over time. A loud sound masks soft sounds
that follow for a brief period of time. Most of the masking dissipates within 100
ms. Amazingly, masking also works backwards in time: a loud sound can mask
sounds that happened a few milliseconds earlier!

Another important idea for compression is that when we are digitizing a nar-
row frequency channel, we do not have to sample at the Nyquist rate. This matters
because if we model human hearing and split a sound into, say, 32 channels, we
might expect that we need 32 times as many samples. But suppose we have a
channel with frequencies from 1000 to 1100 Hz. Rather than sample at 2200 Hz
or higher, we can frequency shift the signal down to the range of 0 to 100 Hz.
Now, we can sample at only 200 Hz and capture all of the signal. To recover the
original sound, we have to frequency shift back to the 1000 to 1100 Hz range. In
theory, you can encode a signal as N bands, each at 1/N of the sample rate, so the
total information is the same.

13.4.2 Some Insight on Frequency Domain and Coding
All perceptual coding is done in the frequency domain even though PCM works
in the time domain. Redundancy is hard to find in the time domain because sound
is vibration, implying constant change. Spectral data tends to be more static. The
spectrum at time t is a good predictor for spectrum at time t + 1. In tonal music,
the spectrum also tends to be relatively sparse. It is non-zero only where there are
sinusoidal partials. Sparse data is easier to encode efficiently.

13.4.3 MP3 - MPEG Audio Layer 3
MPEG is a video compression standard. Within MPEG is the “MPEG Audio
Layer 3” standard for audio compression, commonly known as “MP3.” This stan-
dard specifies how to decode audio so that MP3 files are treated consistently. In-
terestingly, the standard does not specify how to encode audio, so there are slight

6

This pdf for ICM students only - ebook
and paperback available from amazon.com



variations among encoders, resulting in different levels of quality and efficiency.
In tests, a 6-to-1 compression of 48 kHz audio gives no perceptual difference from
the original. The Fraunhofer Institute, who created the MP3 standard, claims 12-
to-1 compression with no perceptual differences.

Let’s take a high-level view of how MP3 works. The first step is to apply a
filter bank that separates the signal into 32 bands of equal width. As described
earlier, each band is sub-sampled by factor of 32 to avoid increasing the overall
sample rate. In practice, bands have some overlap and this sub-sampling causes
some aliasing. Also, the filters and their inverses are slightly lossy in terms of
recovering the original signal.

Next, a psychoacoustic model is applied to estimate the amount of masking
that is present in each channel. This determines how much each band can be
quantized. The model uses a 1024-point FFT and identifies sinusoids because
the masking effect of sinusoids differs from that of noise. The model produces a
signal-to-mask ratio for each of the 32 subbands.

Each subband is then transformed with modified discrete cosine transform
(MDCT) of length 18 or 6 subband samples. Essentially, this is a short-term fre-
quency representation of the subbands, which allows for more efficient coding.
For example, if there is only one sinusoid in the subband, only one MDCT coef-
ficient should be high and others should be low. Next, the MDCT coefficients are
quantized according to the signal-to-masking ratio. This results in 576 coefficients
per frame (18 MDCT coefficients × 32 subbands).

The coefficients are ordered by increasing frequency because the highest fre-
quencies tend to be zeros—these can be encoded without expending any bits.
Next, there will be a run of coefficients that are -1, 0, or 1. These are encoded
4 at a time into alphabet of 81 symbols. The remaining values are coded in pairs.

13.4.4 Details of Huffman Coding
To encode the MDCT coefficients, Huffman Coding is used. Huffman Coding is
the most popular technique for removing coding redundancy. A Huffman Code
is a variable length encoding of symbols into bit strings, and assuming that each
symbol is encoded separately into a string of bits, Huffman Coding is optimal in
producing the smallest expected bit length of any string of symbols.3

Figure 13.6 illustrates the Huffman coding process. To begin with, each sym-
bol is given a probability. E.g. in English, we know that the letter E occurs about
12% of the time, while Z occurs only 0.07%. Thus, we should use fewer bits for
E than Z. For this example, we encode only symbols A, B, C, D, E and F, which
we assume occur with the probabilities shown in Figure 13.6.

The algorithm produces a binary tree (13.6) using a simple process: Starting
with the symbols as leaves of the tree, create a node whose branches have the 2
smallest probabilities. (This would combine D and F in Figure 13.6.) Then, give
this node the probability of the sum of the two branches and repeat the process. For
example, we now have C with probability 0.1 and the DF node with probability
0.1. Combining them, we get a new internal node of probability 0.2. Continue
until there is just one top-level node. Now, each symbol is represented by the path
from the root to the leaf, encoding a left branch as 0 and a right branch as 1. The
final codes are shown at the right of Figure 13.6.

3Another technique, arithmetic coding, and some variations, offer even shorter encodings, essen-
tially by representing symbols by fractional rather than whole bits.
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Figure 13.6: Huffman Coding Tree example.

13.4.5 MP3 Coefficient Coding
Returning to MP3, the terminology of “codes” and “symbols” may be confusing.
In Figure 13.6, the symbols were A, B, C, etc., but in general, these symbols can
stand for numbers or even vectors. Any finite set of values can be considered a
set of symbols that we can encode. In MP3, one of the things we want to encode
are runs of coefficients -1, 0, or 1. These are grouped into 4, so the “symbols” are
4-tuples such as [-1, 0, 1, -1]. To make a Huffman Code, we can let:

A = [-1, -1, -1, -1]
B = [-1, -1, -1, 0]
C = [-1, -1, -1, 1]
D = [-1, -1, 0, -1]
E = [-1, -1, 0, 0]
F = [-1, -1, 0, 1]
etc.

Encoding in groups of 4 allows Huffman Coding to find a more compact overall
representation.

13.4.6 Bit Reservoir and Bit Allocation
Even if audio encoding uses a fixed bit rate, some frames are going to be easier to
encode than others. A trick used in MP3 is to take advantage of easy-to-compress
frames. When bandwidth is left over, bits can be “donated” to a “bit reservoir” and
used later to temporarily exceed the maximum data rate and improve the quality
of more difficult frames.

Deciding how to use bits for encoding is a difficult problem. Encoders allocate
bits to bands where the masking threshold is exceeded by quantization noise. The
band is re-encoded and quantization noise is recalculated. This makes encoding
slow.

13.4.7 Summary
Masking reduces our ability to hear “everything” in a signal, and in particular
quantization noise. MP3 uses a highly quantized frequency domain represen-
tation. Because of different quantization levels and coefficient sizes, Huffman
coding is used to encode the coefficients.
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13.5 LPC: Linear Predictive Coding
Another way to achieve compression is to use better, more predictive models of
the source sound. This is especially important for voice, where a lot is known
about the voice and where there is a big demand for voice data compression. For
voice, source/filter models are used because the voice pitch and filter coefficients
change slowly. Data rates for speech can be as low as 1 to 2 kbps (kilobits per
second) and in cell phone communication are generally in the 5-10 kbps range.

LPC, discussed in Section ??, is an example of using intersample redundancy.
Analysis estimates a vocal tract filter model that allows for good predictions of
the output. By inverse filtering the desired signal, we get a source signal that is
relatively easy to encode. Figure 13.7 illustrates the LPC model. This is also an
example of an “object model” for data compression. The idea is to extract simple
control parameters for an “object” that generates sound. The control parameters
and object parameters can be quite small compared to the audio signal that is
generated.

Figure 13.7: Linear Predictive Coding in Practice

Neural networks have proved to be powerful sequence predictors, so a natural
application is audio coding and compression. Although computationally expen-
sive, the best lossy audio compressors use neural networks to compress audio to
a stream of compact tokens that can then be decoded to obtain similar audio. An
example is EnCodec [?].

13.6 Physical Models – Speech Analysis/Synthesis
It seems feasible that object models and physical models can offer interesting
compression techniques in the future. Our speech is controlled by muscles, and we
know that muscles have low bandwidth compared to audio signals. Also, speech
sounds are highly constrained. If we could transmit a model for speech production
and muscle control parameters, perhaps the data rate for speech could be much
lower and the quality could be higher.

13.7 Music Notation
The physical and object models approach to compression leads us to consider mu-
sic notation. In some sense, music notation is high-level, low-bandwidth “control”
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information for performers who actually produce audio. Of course, in normal sit-
uations, no two music performances are alike, so we cannot really say that music
notation is a compressed form of audio, but it is still interesting to consider nota-
tion, what it encodes, and what it does not.

Music notation is compact and symbolic as opposed to digital audio. Music
notation is missing a lot of detail of how music is performed, for example details of
instruments or muscle movement of performers. Furthermore, getting any musical
rendition of music notation, complete with expressive interpretation and natural
sounding voices and instruments is a big challenge that has not been automated.

Another representation that is similar to music notation is the performance
information found in MIDI, or Musical Instrument Digital Interface. The idea
of MIDI is to encode performance “gestures” including keyboard performances
(when do keys go down?, how fast?, when are they released?) as well as continu-
ous controls such as volume pedals and other knobs and sensors.

The bandwidth of MIDI is small, with a maximum over MIDI hardware of
3 KB/s. Typically, the bandwidth is closer to 3 KB/minute. For example, the
complete works of ragtime composer Scott Joplin, in MIDI form, takes about 1
MB. The complete output of 50 composers (400 days of continuous music) fits
into 500 MB of MIDI—less data than a single compact disc.

MIDI has many uses, but one big limitation is the inability in most cases to
synthesize MIDI to create, say, the sound of an orchestra or even a rock band. An
exception is that we can send MIDI to a player piano to at least produce a real
acoustic piano performance that sounds just like the original. Another limitation,
in terms of data compression, is that there is no “encoder” that converts music
audio into a MIDI representation.

13.8 Deep Networks
An exciting development in audio compression is the use of deep neural networks
(DNNs). Conceptually, audio compression introduces an encoder, that converts
input audio into a compact representation, and a decoder, that converts the com-
pact representation back into an approximation of the original audio. In machine
learning terms, we can think of the encoder and decoder simply as functions from
vectors (a slice of audio) to vectors (the encoding) and from the encoding back
to audio. Often, DNNs require input/output pairs to serve as training data, but if
we set up the encoder and decoder as a single deep network, the desired output is
identical to the input, so we do not need labeled training data. This is sometimes
called unsupervised learning and specifically an autoencoder. Both encoder and
decoder are trained simultaneously on a wide assortment of audio to minimize a
loss function which ideally estimates the perceptual difference between input and
output. Since human perception and rating is not practical in training, various es-
timates are substituted. For example, loss can include such things as differences
in the spectra or accuracy of automatic speech recognition applied to the decoded
audio.

By taking advantage of both intersample redundancy (encoder and decoder
might utilize audio context) and perceptual redundancy, DNN approaches to audio
compression can deliver high compression and high quality. This approach to
audio compression will certainly evolve and improve with learning technologies.
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13.9 Summary
We have discussed three kinds of redundancy: coding redundancy, intersample re-
dundancy, and psycho-perceptual redundancy. µ-law, ADPCM, etc. offer simple,
fast, but not high-quality or high-compression representations of audio. MP3 and
related schemes are more general, of higher quality, and offer higher compression
ratios, but the computation is fairly high. Neural networks achieve even higher
compression ratios, being extremely powerful in learning and using intersample
redundancy. We also considered model-based analysis and synthesis, which offer
even greater compression when the source can be accurately modeled and control
parameters can be estimated. Music notation and MIDI are examples of very ab-
stract and compact digital encodings of music, but currently, we do not have good
automatic methods for encoding and decoding.
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