
Introduction to
Computer Music

Week 12

Instructor: Prof. Roger B. Dannenberg

Topics Discussed: Additive Synthesis, Table-Lookup
Synthesis, Spectral Interpolation Synthesis, Algorithmic
Control of Signal Processing, 3-D Sound, Head-Related

Transfer Functions, Multi-Speaker Playback

This pdf for ICM students only - ebook
and paperback available from amazon.com



Chapter 12

Spectral Modeling,
Algorithmic Control,
3-D Sound

Topics Discussed: Additive Synthesis, Table-Lookup Synthesis, Spectral
Interpolation Synthesis, Algorithmic Control of Signal Processing, 3-D Sound,
Head-Related Transfer Functions, Multi-Speaker Playback

Previously, we considered physical models which simulate physical systems
from which we get vibration and sound. In contrast, we can think about sound
in more perceptual terms: What do we hear? And how can we create sounds
that contain acoustic stimuli to create desired impressions on the listener? Your
first reaction might be that our hearing is so good, the only way to create the
impression of a particular sound is to actually make that exact sound. But we
know, for example, that we are not very sensitive to phase. We can scramble the
phase in a signal and barely notice the difference. This leads to the idea that we
can recreate the magnitude spectrum of a desired sound, perhaps without even
knowing how the sound was created or knowing much about the details of the
sound in the time domain.

This approach is sometimes called spectral modeling and it is a powerful alter-
native to physical modeling. While physical modeling requires us to understand
something about the sound source, spectral modeling requires us to understand
the sound content. We can often just measure and manipulate the spectra of de-
sired sounds, giving us an approach that is simple to implement and relatively
easy to control. In this section, we consider variations on spectral modeling, from
additive synthesis to spectral interpolation.

12.1 Additive Synthesis and Table-Lookup Synthe-
sis

One of the earliest synthesis methods drew upon the intuition that if all sounds
could be represented as sums of sine waves, why not simply add sine waves to
create the desired sound? This additive synthesis approach is not the most efficient
one, and another intuition, that musical tones are mostly periodic, led to the idea
of constructing just one period and repeating it to create tones.

1

This pdf for ICM students only - ebook
and paperback available from amazon.com



12.1.1 Additive Synthesis
Additive synthesis usually means the summation of sinusoids to create complex
sounds. In this approach, every partial has independent frequency and amplitude,
giving unlimited freedom (according to what we know about Fourier analysis and
synthesis) to create any sound. Earlier, we studied analysis/synthesis systems such
as McAuley-Quatieri (MQ) and Spectral Modeling Synthesis (SMS) showing that
analysis and synthesis are possible. We also learned that parametric control is
somewhat limited. For example, time-stretching is possible, but more musical
control parameters such as articulation, formant frequencies and vibrato do not
map directly to any additive synthesis parameters.

12.1.2 Table-Lookup Synthesis
If we are willing to limit sinusoidal (partial) frequencies to harmonics and work
with a fixed waveform shape, then we can save a lot of computation by creating a
table containing one period of the periodic waveform. Usually, the table is over-
sampled (the sample rate is much higher than twice that of the highest harmonic)
so that inexpensive linear interpolation can be used to “read” the table at different
rates. By stepping through the table by a variable increment and performing lin-
ear interpolation between neighboring samples, we can get frequency control. A
simple multiplication provides amplitude control.

Here is a software implementation of a table-lookup oscillator, building on the
algorithm introduced in Section ??. This code computes BLOCK_SIZE samples
every time osc is called. In a real implementation, we would keep the table and
current phase variables in a structure or object so that we could avoid these as
global variables and have more than one oscillator instance. This code does not
implement amplitude control, so the output should be multiplied by an amplitude
envelope separately.

float table[513] = ... some waveform ... ;
double phase = 0.0;

void osc(double hz, float table[], float out[]) {
double incr = hz * 512 / sample_rate;
for (int i = 0; i < BLOCK_SIZE; i++) {

int iphase = floor(phase);
double x1 = table[iphase];
out[i] = x1 + (phase – iphase) *

(table[iphase+1] – x1);
phase += incr;
if (phase >= 512) phase = phase - 512;

}
}

One trick in this code is that table should be initialized to a 512-point wave-
form, with the first value duplicated as the 513th entry. By duplicating the first
sample at the end, we insure that the expression table[iphase + 1] (used
to interpolate between two samples in the table) never accesses a value outside
the bounds of the array, particularly when the phase exceeds 511 but has not
“wrapped around” to zero.

Table-lookup oscillators have two basic parameters: frequency and amplitude,
and otherwise they are limited to a fixed wave shape, but often table-lookup os-
cillators can be combined with filters or other effects for additional control and
spectral variation.

2

This pdf for ICM students only - ebook
and paperback available from amazon.com



12.2 Spectral Interpolation Synthesis
One simple idea to introduce spectral variation into table-lookup oscillators is to
use two tables and interpolate between them, as shown in Figure 12.1. With no
constraints, this could lead to phase cancellation and unpredictable results, but if
the phases of harmonics are identical in both tables, and if the tables are accessed
at the same offset (i.e. index or phase), then when we interpolate between tables,
we are also interpolating between the magnitude spectra of the two tables. This
is interesting! With interpolation between tables, we can create any smoothly
varying harmonic spectrum.

Figure 12.1: Basic Spectral Interpolation. Phase is incremented after each sample
to scan through tables as in a simple table-lookup oscillator, but here, the phase is
used for two table lookups, and the output is an interpolation between Table1 and
Table2.

There are some commercial synthesizers that use a 2-D joystick to control real-
time interpolation between 4 spectra. This can be an interesting control strategy
and is related to using filters to modify spectra—in both cases, you get a low
dimensional (1-D cutoff frequency or 2-D interpolation) control space with which
to vary the spectrum.

12.2.1 Time-Varying Spectrum
Perhaps more interesting (or is it just because I invented this?) is the idea that the
spectrum can evolve arbitrarily over time. For example, consider a trumpet tone,
which typically follows an envelope of getting louder, then softer. As the tone gets
softer, it gets less bright because higher harmonics are reduced disproportionately
when the amplitude decreases. If we could record a sequence of spectra, say one
spectrum every 100 ms or so, then we could capture the spectral variation of the
trumpet sound. The storage is low (perhaps 20 harmonic amplitudes per table, and
10 tables per second, so that is only 200 samples per second). The computation is
also low: Consider that full additive synthesis would require 20 sine oscillators at
the sample rate for 20 harmonics. With spectral interpolation, the cost is only 2
table lookups per sample. We also need to compute tables from stored harmonic
amplitudes, but tables are small, so the cost is not high. Overall, we can expect
spectral interpolation to run 5 to 10 times faster than additive synthesis, or only a
few times slower than a basic table-lookup oscillator.

Of course, if we just want to reproduce recorded instrument tones, maybe
sampling is a better approach because it captures inharmonic attack transients
very well. While the storage cost is higher, the computational cost of sampling
(mostly due to sample-rate conversion to control frequency) is in the same range
as spectral interpolation synthesis. But with sampling, we are stuck with a par-
ticular recording of every tone and we have little control over it. With spectral
interpolation, we have the opportunity to compute the evolving spectrum.

3

This pdf for ICM students only - ebook
and paperback available from amazon.com



12.2.2 Use Pitch and Amplitude to Compute Spectra
One successful approach that is especially good for wind instrument simulation
is to model the spectrum as a function of amplitude and frequency. We carefully
record instruments playing crescendos (increasing loudness) at different pitches.
Then we analyze these tones to get a matrix of spectra at different pitch and loud-
ness levels. As shown in Figure 12.2, we input desired frequency and amplitude,
do a lookup in our 2-D matrix to find the appropriate next spectrum, then use spec-
tral interpolation to smoothly change to that spectrum. As long as amplitude and
frequency are slowly changing, as in vibrato and amplitude envelopes, the output
will realistically change spectrum just like the real instrument. In fact, when am-
plitude is changing rapidly, we cannot hear the spectral changes very well. In our
model (Figure 12.2), we normalize all the spectra in the 2D matrix so everything
comes out of the spectral interpolation oscillator at about the same level, and we
multiply that by the amplitude envelope. This captures the rapidly varying am-
plitude envelope faithfully, and at least approximately does the right thing with
the spectrum, even though spectral changes may lag behind or be smoothed out a
little.

This basic approach is used in the Dannenberg Brass software for Native In-
struments Reaktor synthesizer. (www.native-instruments.com/en/reaktor-
community/reaktor-user-library/entry/show/13607/). This implementation
credits this author but was developed without any direct collaboration.

Figure 12.2: Computation for Spectral Interpolation Synthesis. Frequency and
amplitude are input controls. The spectrum is varied by mapping the current fre-
quency and amplitude to a spectrum stored in a matrix. This may be an inter-
polated lookup using the 4 nearest data points (spectra) to yield smooth spectral
variations as a function of the continuous frequency and amplitude signals. There
is also interpolation through time from one spectrum to the next, using a two-
table-lookup oscillator. Since amplitude variations may need to be quite rapid, the
amplitude scaling takes place at audio rates just before the output.

12.2.3 Dealing with Rapid and Inharmonic Attacks
The “pure” spectral interpolation synthesis model works well for some instru-
ments, but others, particularly brass and saxophones,1 have distinctive attack sounds
that are too inharmonic and noisy to recreate from harmonic waveforms. The so-
lution is to combine sampling with spectral interpolation, using short sampled
attacks of about 30 ms duration. It is tricky to join the sampled attacks smoothly

1Saxophones are also made of brass, but are considered woodwinds.

4

This pdf for ICM students only - ebook
and paperback available from amazon.com

https://www.native-instruments.com/en/reaktor-community/reaktor-user-library/entry/show/13607/
https://www.native-instruments.com/en/reaktor-community/reaktor-user-library/entry/show/13607/


to table-lookup signals because a rapid cross-fade causes phase cancellation if the
sample and table are not matched in phase. The solution is to make the sample
long enough (and 30 ms is usually enough) that it settles into a harmonic spectrum.
Then, we perform analysis on the end of the attack to obtain the amplitude and
phase of each partial. This becomes the first waveform, and every waveform after
that has to keep the same phase relationship. With these tricks, we can achieve re-
alistic, inharmonic or noisy attacks and then control the evolution of the harmonic
spectrum using almost arbitrary amplitude and frequency controls.

12.2.4 Where Do We Get Control Information?
This raises the question of where to get amplitude and frequency controls. In
traditional synthesis research, illustrated at the left of Figure 12.3, control is con-
sidered an input to the instrument, which is characterized by some synthesis algo-
rithm (perhaps a physical model or a vocal model, etc.) To evaluate the synthesis
technique, we make sounds with the synthesizer and (often) compare to acoustic
sounds. The assumption is that if the comparison is not good, we should go back
and fix the synthesis algorithm.

Figure 12.3: Left: Traditional approach to synthesis algorithm research and de-
velopment. It is assumed that control functions are not critical and not part of the
synthesis algorithm. Right: The SIS approach. Control and synthesis are consid-
ered to be related and must be developed and optimized together. Both control
and synthesis are critical to good, realistic and musical output.

The SIS Research Approach

In contrast, the approach of Spectral Interpolation Synthesis is that control is an in-
tegral part of the synthesizer. If you do not control a synthesis algorithm properly,
it will never sound natural. This idea is illustrated on the right of Figure 12.3. Re-
search has shown that crude ADSR envelopes, and even envelopes derived from
the analysis of individual acoustic instrument tones, do not give musical results
even if the synthesis algorithm is perfect, so it follows that decades of synthesis
research are based on faulty assumptions!

Divide-and-Conquer: Performance Model vs. Synthesis Model

To develop control for spectral interpolation, we take the divide-and-conquer ap-
proach shown in Figure 12.4 of separating the control problem from the synthesis
problem (but keep in mind that we need both together to get good sounds in the
end). In this model, the input is a score—the notes we want to play, along with

5

This pdf for ICM students only - ebook
and paperback available from amazon.com



phrase marks, loudness indications, and perhaps other annotations. The perfor-
mance model models how the performer interprets the score and produces controls
for the instrument—in the spectral interpolation approach, this is mainly ampli-
tude and frequency. Then, we use the synthesis model (Figure 12.2) to convert
control signals into sound.

Figure 12.4: The divide-and-conquer approach. Even though control and synthe-
sis must both be considered as part of the problem of musical sound synthesis, we
can treat them as two sub-problems.

Research Model: Synthesis Refinement

Given this framework, we can develop and refine the synthesis model by extract-
ing control signals from real audio produced by human performers and acoustic
instruments. As shown in Figure 12.5, the human-produced control signals are
used to drive the synthesis, or instrument, model, and we can listen to the results
and compare them directly to the actual recording of the human. If the synthesis
sounds different, we can try to refine the synthesis model. For example, dissatis-
faction with the sound led us to introduce sampled attacks for brass instruments.

Note that the ability to drive the instrument model with amplitude and fre-
quency, in other words parameters directly related to the sound itself, is a big
advantage over physical models, where we cannot easily measure physical pa-
rameters, like bow-string friction or reed stiffness, that are critical to the behavior
of the model.

Research Model: Control Refinement

Assuming we have produced a good-sounding synthesizer, we can then turn to the
control problem. The idea here is to get humans to perform scores, extract control
information, drive the synthesis with controls, and produce a sound. This output
from measured control signals represents the best we could hope to achieve since
a human produced the control with a real instrument. Now, we can also translate
the score to controls with a performance model. If we do not like the results, we
can improve the model and keep iterating until we have something we like. This
is shown in Figure 12.6.

12.2.5 A Study Of Trumpet Envelopes
We will now discuss a particular study that followed the paradigm just described.
My students and I constructed a good spectral-interpolation-based trumpet syn-
thesizer and set out to obtain good control envelopes from scores. This discussion

6

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 12.5: Synthesis refinement. To optimize and test the synthesis part of the
SIS model, control signals can be derived from actual performances of musical
phrases. This ensures that the control is “correct,” so any problems with the sound
must be due to the synthesis stage. The synthesis stage is refined until the output
is satisfactory.

Figure 12.6: Control refinement. Having developed an adequate synthesis model
(see Figure 12.5), we compare controls from a performance model to controls
extracted from human performance. Both controls are synthesized by the known-
to-be-good synthesis model, so any problems can be attributed to the performance
model that computes controls. The model is refined until the output sounds good
compared to the output based on human performance.

7

This pdf for ICM students only - ebook
and paperback available from amazon.com



is not just relevant to spectral interpolation synthesis. The findings are relevant to
any synthesis method and help explain some of the subtleties we find in acoustic
instrument synthesis.

The main conclusion of this work is that

• envelopes are largely determined by context;

• envelope generation techniques can improve synthesis.

In early experiments, we studied the question of how the context of notes in
the score affect the center of mass of amplitude envelopes. The center of mass
tells us, if we were to cut out the envelope shape from a piece of cardboard, where
would the shape balance? If the beginning of the note is loud, the center of mass
will be earlier. If the sound grows steadily, the center of mass will be later. This
is one of the simplest measures of shape and a good place to start.

Figure 12.7 shows some results of this study. The multiple curves show great
consistency from one performance to the next when the same music is played, but
there is a striking difference between the envelopes on the left, from articulated
tones, to the ones on the right, from slurred tones. Some results from measuring
center of mass include:

• When the previous pitch is lower and the next pitch is higher (we call this
an “up-up” condition), notes showed a later center of mass than other com-
binations;

• large pitch intervals before and after the tone resulted in an earlier center of
mass than small intervals;

• legato articulation gave a later center of mass than others (this is clearly
seen in Figure 12.7.

Figure 12.7: Context influences amplitude envelopes. The envelopes on the left
are from the second of three articulated (tongued) notes. At right, the envelopes
are from the second of three slurred notes. It is clear that articulation and con-
text are significant factors in determining envelope shape. There is not a single
“characteristic” trumpet envelope, and measuring the envelope of one tone out of
context will not produce many of the features seen above.

Envelope Model

The center of mass does not offer enough detail to describe a complete trumpet
envelope. A more refined model is illustrated in Figure 12.8. In this model, the
envelope is basically smooth as shown by the dashed line, but this overall shape
is modified at the beginning and ending, as shown inside the circles. It is believed
that the smooth shape is mainly due to large muscles controlling pressure in the

8

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 12.8: The “tongue and breath” envelope model is based on the idea that
there is a smooth shape (dashed line) controlled by the diaphram, upper body
and lungs, and this shape is modified at note transitions by the tongue and other
factors. (Deviations from the smooth shape are circled.)

lungs, and the beginning and ending are modified by the tongue, which can rapidly
block or release the flow of air through the lips and into the trumpet.

The next figure (Figure 12.9) shows a typical envelope from a slurred note
where the tongue is not used. Here, there is less of a drop at the beginning and
ending. The drop in amplitude (which in the data does not actually reach zero or
silence), is probably due to the disruption of vibration when valves are pressed and
the pitch is changed. Whatever is going on physically, the idea of a smooth breath
envelope with some alterations at the beginning and ending seems reasonable.

Figure 12.9: The envelope of a slurred note. This figure shows that the “tongue
and breath” model also applies to the envelopes of slurred notes (shown here).
The deviations at the beginning and ending of the note may be due to trumpet
valves blocking the air or to the fact that oscillations are disrupted when the pitch
changes.

Based on looking at many envelopes, we conclude that a “breath envelope” is
useful to give the overall shape, and a specific attack and decay should be added to
incorporate fine details of articulation. This envelope model is shown in detail in
Figure 12.10, which shows 9 discrete parameters used to describe the continuous
curve. The generic “breath envelope” shown in the upper part of the figure is
an actual envelope from a long trumpet tone. By taking a range of the whole
envelope, from tf to tt, we can get a more rounded shape (smaller tf larger tt)
or a flatter shape (tf and tt close in time), and we can shift the center of mass
earlier (later tf and tt) or later (earlier tf and tt). Additional parameters control the
beginning and ending details. Note how this is decidedly not an ADSR envelope!

9

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 12.10: An amplitude envelope specification. In order to produce a wide
variety of shapes based on the “tongue and breath” envelope model, we describe
continuous envelopes with 9 parameters, as shown here.

Computing Parameters

All 9 envelope parameters must be automatically computed from the score. Ini-
tially, we used a set of rules designed by hand. Parameters depend on:

• pitch (in semitones, according to score);

• duration (in seconds, according to score);

• begin-phrase (is this the first note in a phrase?);

• end-phrase (is this the last note in a phrase?)

• from-slur (is there a slur from preceding note?);

• to-slur (is there a slur to the next note?);

• direction-up (is this note higher than preceding note?).

The rules were developed by fitting generated envelopes to actual measured
envelopes and generalizing from observed trends. Here is one example, illustrat-
ing the computation of the parameter tf. As shown in Figure 12.11, there are three
cases. If coming from a slur and the direction is up, tf = 0.1. If the direction is not
up, tf = 0.4. If not coming from a slur, tf = 0.03−0.01× log2(dur).

Similar rules are used to compute all 9 parameters of every envelope. The
score-to-envelope mapping is hand-crafted and far from complete and perfect,
but the results, at least for simple scores, is quite good and sounds very natu-
ral. Constructing mappings between multi-dimensional spaces (in this case, from
multiple features of scores to multiple envelope parameters) is a natural problem
for machine learning. In fact, my student Ning Hu created an automated sys-
tem to analyze audio recordings of acoustic instruments and create both a spectral
interpolation synthesis model and a performance model that includes amplitude
envelopes and vibrato. No manual rule construction or design was required [?].

12.2.6 Summary and Discussion of Spectral Interpolation
Spectral Interpolation Synthesis is based on modeling “real” performances, using
measurements of spectra and other audio features to model what the listener hears

10

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 12.11: Computing envelope parameters. This example shows how the
parameter tf is derived from score features from-slur, direction-up and dur.

without any modeling of the physical instrument. The performance model results
in phrase-long control functions rather than individual notes. Since control func-
tions are based on note-to-note transitions and context, the method requires some
look-ahead. (The shape of the envelope depends on the pitch and articulation of
the following note.)

12.2.7 Conclusions
What have we learned? First, envelopes and control are critical to music synthe-
sis. It is amazing that so much research was done on synthesis algorithms without
much regard for control! Research on the spectral centroid showed statistically
valid relationships between score parameters and envelope shape, which should
immediately raise concerns about sampling synthesis: If samples have envelopes
“baked in,” how can sampling ever create natural-sounding musical phrases? Cer-
tainly not without a variety of alternative samples with different envelopes and
possibly some careful additional control through amplitude envelopes, but for
brass, that also implies spectral control. Large sample libraries have moved in
this direction.

The idea that envelopes have an overall “breath” shape and some fine details
in the beginning and ending of every note seems to fit real data better than ADSR
and other commonly used models. Even though spectral interpolation or even
phrase-based analysis/synthesis have not become commonplace or standard in the
world of synthesis, it seems that the study of musical phrases and notes in context
is critical to future synthesis research and systems.

12.3 Algorithmic Control of Signal Processing
In the previous section, we looked carefully at some ideas on the synthesis of
acoustic instrument sounds. In this section, we consider something that has no
basis in the acoustical world: the direct generation and control of audio through
algorithms.

11

This pdf for ICM students only - ebook
and paperback available from amazon.com



There are relatively few works that push decision making, selection, wave
shape, and parametric control down below the note level and into the audio signal
itself. Ianis Xenakis developed a system called GENDYN that creates waveforms
from line segments using algorithmic processes [?]. Herbert Brun’s SAWDUST
is another example, described as a program for composing waveforms (see Sec-
tion ??). Curtis Roads wrote the book Microsound [?], which concerns granular
synthesis and more generally the realm between samples and notes. We have ex-
plored granular synthesis with Nyquist in some detail. In this section, we will look
at signals controlled by (Nyquist) patterns and patterns controlled by signals.

12.3.1 Sounds controlled by Patterns
In Figure 12.12, we see some code and a generated control function (a Nyquist
signal). The signal is created by the SAL function pat-ctrl, which takes two
patterns as parameters. The first pattern (durpat) returns durations and the sec-
ond (valpat) returns amplitude values. As seen in the generated signal, durpat
alternates between 0.1 and 0.2, while valpat cycles through the stair-step values
of 0, 1, 2.

Pat-ctrl

Figure 12.12: The pat-ctrl function creates a piecewise-constant function
where each step has a duration and amplitude determined by the two pattern gen-
erator object parameters. Each pair of numbers retrieved from the two patterns
produces one step in the stair-step-like function.

The implementation of pat-ctrl is shown below. This is a recursive se-
quence that produces one segment of output followed by a recursive call to pro-
duce the rest. The duration is infinite:

define function pat-ctrl(durpat, valpat)
return seq(const(next(valpat), next(durpat)),

pat-ctrl(durpat, valpat))

We can use pat-ctrl to construct a frequency control function and synthesize
that frequency contour. The function pat-fm, shown below, adds the result of
pat-ctrl to a pitch parameter, converts the pitch from steps to Hz, and then
synthesizes a sinusoid. If durpat returns very small values, the resulting sound
will not have discernible pitch sequences, at least not at the level of segment
durations returned by durpat. However, higher-level structures in durpat and
valpat will create structured timbral variations that catch our attention. In other
words, the intent here is to modulate the sine tone at audio rates using complex
patterns and resulting in novel sounds.

define function pat-fm(durpat, valpat, pitch, dur)
begin

12

This pdf for ICM students only - ebook
and paperback available from amazon.com



with hz =
step-to-hz(pitch + pat-ctrl(durpat, valpat))

return pwl(0.01, 1, dur - 0.1, 1, dur) *
hzosc(hz + 4.0 * hz * hzosc(hz))

end

Using Scores

One long sine tone may not be so interesting, even if it is modulated rapidly by
patterns. The following example shows how we can write a score that “launches”
a number of pat-fm sounds (here, the durations are 30, 20, 18, and 13 seconds)
with different parameters. The point here is that scores are not limited to conven-
tional note-based music. Here we have a score organizing long, overlapping, and
very abstract sounds.

exec score-play(
{{ 0 30 {pat-fm-note :grain-dur 8 :spread 1

:pitch c3 :fixed-dur t :vel 50}}
{10 20 {pat-fm-note :grain-dur 3 :spread 10

:pitch c4 :vel 75}}
{15 18 {pat-fm-note :grain-dur 1 :spread 20

:pitch c5}}
{20 13 {pat-fm-note :grain-dur 1 :spread 10

:pitch c1}}})

12.3.2 Pattern Controlled by Sounds
If we consider sounds controlled by patterns, we should think about the opposite.
Here, we will look at control envelopes (which are also of type SOUND in Nyquist)
and how they can be used in patterns. (Maybe you can also think of interesting
ways for audio sounds to control patterns.)

When constructing sequences of events, scores and score-gen may be all you
need. But if you want to influence the evolution of fine-grain decisions, such as
pattern output over time, then perhaps envelopes and other controls can be useful.
This relates to a concept we saw before: tendency masks, which specify long-term
trends. A standard example is: randomly choose the next pitch between an upper
and lower bound, where the bounds are given by functions that change over time.

To implement something like tendency masks in patterns, we will use Nyquist
SOUNDs to specify the global continuous evolution of parameter values. To access
the sound at a particular time, we use sref(sound, time). Note that sound can
be any SOUND, but it might be most convenient to use a piece-wise linear envelope.

In sref, time is relative to the environment, so time = 0 means “now.” And
remember that while behaviors start at “now,” existing sounds have a definite start
time. So when we write sref(sound, 0), it means access sound at the current
time, not access the beginning (time 0) of sound.

A Template for Global Control using Sounds

Here is an example you can build on for controlling patterns with sounds. There
are three definitions:

• pitch-contour defines a time-varying contour that we want to use with
some pattern computation;

• get-pitch is a function that simply accesses the pitch contour at the cur-
rent time (indicated by time 0);

13

This pdf for ICM students only - ebook
and paperback available from amazon.com



• pwl-pat-fm is a function that will create and use a pattern. Within the
pattern, we see make-eval({get-pitch}). The make-eval pattern con-
structor takes an expression, which is expressed in Lisp syntax. Each time
the pattern is called to return a value, the expression is evaluated. Recall
that in Lisp, the function call syntax is (function-name arg1 arg2 ...),
so with no arguments, we get (function-name), and in SAL, we can write
a quoted list as {function-name}. Thus, make-eval({get-pitch}) is the
pattern that calls get-pitch to produce each value.

variable pitch-contour =
pwl(10, 25, 15, 10, 20, 10, 22, 25, 22)

function get-pitch()
return sref(pitch-contour, 0)

function pwl-pat-fm()
begin

...
make-eval(get-pitch),
...

end

play pwl-pat-fm()

We can do something similar with score-gen, using a SOUND to provide a time-
varying value that guides the progress of some parameter. In the following exam-
ple, the variable pitch-contour is accessed as part of the pitch: calculation.

begin
with pitch-contour =

pwl(10, 25, 15, 10, 20, 10, 22, 25, 22),
ioi-pattern = make-heap(0.2 0.3 0.4)

exec score-gen(
save: quote(pwl-score),
score-dur: 22,
pitch: truncate(

c4 + sref(pitch-contour, sg:start) +
#if(oddp(sg:count), 0, -5)),

ioi: next(ioi-pattern),
dur: sg:ioi - 0.1,
vel: 100)

end

You can even use the envelope editor in the NyquistIDE to graphically edit
pitch-contour. To evaluate pitch-contour at a specific time, sref is used
as before, but the time parameter to sref is sg:start, not 0. We need to use
sg:start here because the entire score-gen computation is performed at time
0. We are not in a behavior, and there is no environment that changes the current
time with each new note. Since everything is (normally) relative to time 0, we use
score-gen’s special sg:start variable to refer to the “current” time, that is, the
start time of each note.

12.4 3-D Sound
We now turn to the topic of sound as originating in 3-D space. We know from
previous discussions of perception that there are various cues that give the im-
pression of the origin of sounds we hear. In computer music work, composers are
interested in simulating these cues to simulate a 3-D sonic environment. Earlier,

14

This pdf for ICM students only - ebook
and paperback available from amazon.com



we introduced the idea of head-related transfer functions and the simulation of
spatial cues over headphones. In this section, we expand on this discussion and
also consider the use of multiple speakers in rooms and particularly in concert
halls.

12.4.1 Introduction
To review from our discussion of sound localization, we use a number of cues to
sense direction and distance. Inter-aural time delay and amplitude differences give
us information about direction in the horizontal plane, but suffers from symmetry
between sounds in front and sounds behind us. Spectral cues help to disambiguate
front-to-back directions and also give us a sense of height or elevation. Rever-
beration, and especially the direct-sound-to-reverberant-sound ratio gives us the
impression of distance, as do spectral cues.

12.4.2 Duplex Theory
In the duplex theory of Lord Rayleigh, sound localization is achieved through
a combination of interaural time difference (ITD) and interaural level difference
(ILD). ITD is caused by the difference in distance between our ears and the sound
source when the source is to the left or right. The time difference is related to the
speed of sound, and remembering that sound travels about 1 foot per millisecond,
we can estimate that ITD is a fraction of a millisecond. (No wonder our ears can
perceive time so precisely–at least precise relative timing between left and right
ears is useful for localization.)

The ILD is caused by the masking effect of our heads when sound comes from
one side or the other. Since different frequencies refract around our heads differ-
ently, the ILD is frequency dependent and more pronounced at higher frequencies
where the wavelengths are short and our head does a better job of shielding one
ear from the sound.

In duplex theory, there is ambiguity caused by symmetry. Any direction from
the head falls on a cone-shaped surface, where the apex of the cone is at the head
and center line of the cone runs through the two ears. This set of ambiguous
directions is called the cone of confusion (Figure 12.13) because every point on
the cone produces the same ITD and ILD.

In fact, the duplex theory ignores the pinnae, our outer ears, which are not
symmetric from front-to-back or top-to-bottom. Reflections in the pinnae create
interference that is frequency-dependent and can be used by our auditory system
to disambiguate sound directions. The cues from our pinnae are not as strong as
ITD and ILD, so it is not unusual to be confused about sound source locations,
especially along the cone of confusion.

12.4.3 HRTF: Head-Related Transfer Functions
When sound reaches our ears from a particular direction, there is a combination
of ITD, ILD, and spectral changes due to the pinnae. Taken together, these cues
can be expressed as a filter called the head-related transfer function, or HRTF. We
can measure the HRTF, for example by placing tiny microphones in the ears of a
subject in an anechoic chamber, holding their head steady, and recording sound
from a speaker placed at a carefully controlled angle and elevation. There are
some clever ways to estimate the HRTF, but we will skip the signal processing
details. To fully characterize the HRTF, the loudspeaker and/or listener must be

15

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 12.13: The “cone of confusion,” where different sound directions give the
same ITD and ILD.

(Credit: Bill Kapralos, Michael Jenkin and Evangelos Milios, “Virtual Audio Systems,” Presence
Teleoperators & Virtual Environments, 17, 2008, pp. 527-549.)

moved to many different angles and elevations. The number of different angles
and elevations measured can range from one hundred to thousands.

To simulate a sound source at some angle and elevation, we retrieve the near-
est HRTF measurement to that direction and apply the left and right HRTFs as
filters to the sound before playing the sound to the left and right ears through
headphones. (See Figure 12.14.)

Figure 12.14: Sound is localized with HRTFs by filtering a sound to simulate
the effect of delays, head, and ears on the sound. A different filter is used for
left and right channels, and the filters are different for different directions. (From
http://www.ais.riec.tohoku.ac.jp/Lab3/sp-array/index.html).

One way to implement the HRTF filters is to compute the HRIR, or head-
related impulse response, which is the response of the HRTF to an impulse input.
To filter a sound by the HRTF, we can convolve the sound with the HRIR. If
the sound is moving, it is common to interpolate between the nearest HRTFs or
HRIRs so that there is no sudden switch from one filter to another, which might
cause pops or clicks in the filtered sound.

16

This pdf for ICM students only - ebook
and paperback available from amazon.com



12.4.4 HRTF, Headphones, and Head Tracking
When HRTFs are used, the listener normally wears headphones, which isolate
sounds to the left and right ears and eliminate most of the effects of actual room
acoustics in the listening space. Headphones have the problem that if the listener
moves their head, the simulated space will rotate with the head and the head-
phones. To solve this problem, headphones are often tracked. Then, if the head
turns 20◦ to the left, the virtual sound source is rotated to the right to compen-
sate. Headphones with head tracking are sometimes combined with virtual reality
(VR) goggles that do a similar thing with computer graphics: when the listener
turns 20◦ to the left, the virtual world is rotated to the right, giving the impression
that the world is real and we are moving the head within that world to see different
views.

12.4.5 Room Models
An alternative to HRTFs and headphones is to use speakers in a room to create
the effect of localized sounds. One approach is to use ray-tracing ideas from com-
puter graphics to estimate a sound field in an imaginary space. One difficulty is
that sound is slow and has long wavelengths relative to objects and rooms, which
means that refraction is significant—sound does not always travel in straight lines!
The refraction is frequency dependent. Nevertheless, ray tracing can be used to
develop early reflection models for artificial reverberation that convey the geome-
try of rooms, even if the simulation is not perfect.

12.4.6 Doppler Shift
Another interesting process that works well with loudspeakers is the simulation of
motion using Doppler shift. Sound at a distance is delayed. When sound sources
move, the distance changes, so does the delay, and the change creates Doppler
shift, or a change in frequency. Doppler shift can be modeled with actual delay
consisting of buffers of samples, perhaps with some interpolation to “tap” into the
delay at fractional positions. Sometimes, we can just use frequency modulation to
give the effect of Doppler shift without any real simulation of delay. If there are
multiple reflections, each reflection can have a different Doppler shift. This could
add additional realism, but I have never seen a system that models reflections with
individual Doppler shifts.

12.4.7 Reverberation
Doppler shift is enhanced through the use of reverberation. If a sound is reced-
ing rapidly, we should hear several effects: the pitch drops, the sound decreases
in amplitude and the ratio of reverberation to direct sound increases. Especially
with synthesized sounds, we do not have any pre-conceptions about the absolute
loudness of the (virtual) sound source. Simply making the source quieter does
not necessarily give the impression of distance, but through the careful use of
reverberation, we can give the listener clues about distance and loudness.

12.4.8 Panning
Stereo loudspeaker systems are common. A standard technique to simulate the
location of a sound source between two speakers is to “pan” the source, sending
some of the source to each speaker. Panning techniques and the “hole-in-the-
middle” problem were presented in detail in Section ??. Panning between two

17

This pdf for ICM students only - ebook
and paperback available from amazon.com



speakers can create ILD, but not ITD or spectral effects consistent with the de-
sired sound placement, so our ears are rarely fooled by stereo into believing there
is a real 3-D or even 1-D space of sound source locations.2 Finally, room reflec-
tions defeat some of the stereo effect or at least lead to unpredictable listening
conditions.

12.4.9 Multi-Speaker Playback
If two speakers are better than one, why not many speakers? This is not so prac-
tical in the home or apartment, but common in movie theaters and concert halls,
especially for concerts of computer music. “Surround Sound” systems are avail-
able as consumer audio systems as well. In general, the simulation of direction is
achieved by choosing the nearest speaker in the desired direction. Often, sound
is panned between the nearest 2 speakers when speakers are in a plane around
the audience, or between the nearest 3 speakers when speakers are arranged in a
dome.

At the risk of over-generalization, there are two general schools of thought on
sound reproduction with loudspeakers. One school views loudspeakers as an ap-
proximation to some ideal. In this view, loudspeakers should have high fidelity to
recreate any desired source sound with minimal alteration. When many speakers
are used, they are almost invariably identical and uniformly distributed to allow
panning to any angle. The focus is on sound content, and any speaker limitations
are just a necessary evil.

The other school views electro-acoustic music more holistically. Loudspeak-
ers are a part of the process. Rather than bemoan speaker imperfections, we can
create an “orchestra” of loudspeakers of different types and placement. Com-
posers can utilize directionality and frequency responses of different loudspeak-
ers with musical intent. We embrace the fact that sound comes from loudspeakers
rather than trying to hide it.

Recently, a new approach to sound localization with loudspeakers has come
under investigation. The technique, called wavefield synthesis, uses a large ar-
ray of speakers to reproduce the wave front of an imaginary 3-D or 2-D scene.
Imagine a cubical room with one wall open and sound sources outside the room.
Imagine an array of microphones on a grid stretched across the open wall, cap-
turing the incoming sound wave at 100 or more locations. Now, imagine closing
the wall, replacing each microphone with a small loudspeaker, and playing back
the recorded sound wave through 100 or more loudspeakers. In principle, this
should reproduce the entire incoming sound wave at the wall, creating a strong
3-D effect. Of course there are questions of directionality, how many speakers are
needed, whether to use a 2-D or 1-D array, room reflections, etc. An example of
wavefield synthesis and playback is an auditorium at the Technical University of
Berlin, which has 832 audio channels. Small speakers are placed in a continuous
line on the left, front, and right walls. The speakers are separated by only 10 cm,
but because of the small size, there are larger speakers just below them, every 40
cm. A small cluster of computers is used to compute each channel based on the
precise delay from virtual sound sources. The results are quite impressive and

2Thus, the whole idea of stereo is highly suspect. Could it be that stereo was promoted by man-
ufacturers who wanted to sell more gear? There were multi-speaker systems in use before consumer
stereo, and experiments have shown that three-channel systems (adding a center channel) are signif-
icantly better than stereo. My guess is that stereo is ubiquitous today because it was both interesting
enough to sell to consumers yet simple enough to implement in consumer media including the phono-
graph record and FM radio. Even though we have only two ears, stereo with two channels falls far
short of delivering a full two-dimensional sound experience, much less three dimensions.

18

This pdf for ICM students only - ebook
and paperback available from amazon.com



unlike any typical speaker array, giving the impression that sounds are emerging
from beyond or even within the line of speakers.

12.4.10 Summary
In this section, we have reviewed multiple perceptual cues for sound location and
distance. HRTFs offer a powerful model for simulating and reproducing these
cues, but HRTFs require headphones to be most effective, and since headphones
move with the head, head tracking is needed for the best effect. For audiences, it is
more practical to use loudspeakers. Multiple loudspeakers provide multiple point
sources, but usually are restricted to a plane. Panning is often used as a crude
approximation of ideal perceptual cues. Panning can be scaled up to multiple
loudspeaker systems. Rather than treat speakers as a means of reproducing a
virtual soundscape, loudspeaker “orchestras” can be embraced as a part of the
electroacoustic music presentation and exploited for musical purposes. Finally,
wavefield synthesis offers the possibility of reproducing actual 3-D sound waves
as if coming from virtual sound sources, but many speakers are required, so this
is an expensive and still mostly experimental approach.

19

This pdf for ICM students only - ebook
and paperback available from amazon.com


	Spectral Modeling,Algorithmic Control,3-D Sound
	Additive Synthesis and Table-Lookup Synthesis
	Additive Synthesis
	Table-Lookup Synthesis

	Spectral Interpolation Synthesis
	Time-Varying Spectrum
	Use Pitch and Amplitude to Compute Spectra
	Dealing with Rapid and Inharmonic Attacks
	Where Do We Get Control Information?
	A Study Of Trumpet Envelopes
	Summary and Discussion of Spectral Interpolation
	Conclusions

	Algorithmic Control of Signal Processing
	Sounds controlled by Patterns
	Pattern Controlled by Sounds

	3-D Sound
	Introduction
	Duplex Theory
	HRTF: Head-Related Transfer Functions
	HRTF, Headphones, and Head Tracking
	Room Models
	Doppler Shift
	Reverberation
	Panning
	Multi-Speaker Playback
	Summary



