
Introduction to
Computer Music

Week 11

Instructor: Prof. Roger B. Dannenberg

Topics Discussed: Mass-Spring Models, Karplus-Strong,
Waveguide Models, Guitar Models

This pdf for ICM students only - ebook
and paperback available from amazon.com



Chapter 11

Physical Modeling
Topics Discussed: Mass-Spring Models, Karplus-Strong, Waveguide Mod-
els, Guitar Models

11.1 Introduction
One promising way to create sounds is to simulate or model an acoustic instru-
ment. If the model is accurate, then the details of control and vibration can in
principle lead to realistic sounds with all the control possibilities of physical in-
struments. This approach might be called physics-based modeling, but the com-
mon terminology is simply physical models. Physical models can be contrasted
with abstract synthesis or the use of mathematical functions (such as FM syn-
thesis and Additive synthesis), sampling, and source/filter models. None of these
alternative approaches really capture the complexities of physical systems. When
aspects of physical systems defy analysis, we can resort to simulation to compute
and predict the behavior of those systems. However, even simulation is selective
and incomplete. The key is to model the interesting aspects while keeping the
overall simulation and its computation tractable.

Like all of the synthesis methods we have covered, physical modeling is not
one specific technique, but rather a variety of related techniques. Behind them all,
however, is the basic idea that by understanding how sound / vibration / air / string
behaves in some physical system (an instrument), we can model that system in a
computer and thereby generate realistic sounds through computation.

11.2 Mass-Spring Model
A simple example of a physical model is the Mass-Spring model consisting of a
string and a set of masses attached to the string (shown in Figure 11.1). This is a
discrete approximation of a continuous string where mass is distributed uniformly
throughout the length of the string. By “lumping” the mass at a finite set of points,
we can use digital simulation to model the string. In the model, we consider the
string between masses to be mass-less springs that pull on the masses with a force
that is proportional to the stretch of the spring.

To analyze all the forces here: the springs are pulling on the objects in opposite
directions, the masses at the ends are assumed fixed. Because the springs are
pulling in both directions, there is little/no longitudinal force on the objects, but
there is a vertical restoring force. So when the string is bent up with the concave
side facing down, some of the forces on the masses are downward, as shown by
“Restoring Force” in Figure 11.1. Conversely, when the string is down with the

1

This pdf for ICM students only - ebook
and paperback available from amazon.com



concave side facing up, the net force is pulling up. These forces will accelerate
the objects. If we put the string in this configuration and release it, then the left
half will accelerate downward and right half would go upward. As the masses are
pulled to zero displacement, or to a straight line between the end points, there is
no more net force on the objects but the masses will keep moving and stretch the
string in the opposite direction until the restoring force can slow them down and
reverse the direction. This motion will repeat, causing the string to oscillate.

Figure 11.1: Mass-Spring Model of a String

This is a computationally expensive model because you have to compute the
force on each one of the masses and store the velocity and position of the masses
for each time step of the simulation. But computers are fast, and discrete time
simulation is mostly multiplies and adds, so you can easily run interesting models
(including this one) in real-time. The number of modes (partials) that you can
support corresponds to the number of masses. Also, you can add stiffness and
other interesting properties into the string, e.g. the string can be non-linear, it can
have a driving force, there can be friction, etc.

11.3 Karplus-Strong Plucked String Algorithm
Let’s take a look at a variation of the Mass-Spring model. This is a really simple
but very effective physical model of a plucked string, called the Karplus-Strong
algorithm (so named for its principal inventors, Kevin Karplus and Alex Strong).
One of the first musically useful physical models (dating from the early 1980s1),
the Karplus-Strong algorithm has proven quite effective at generating a variety of
plucked-string sounds (acoustic and electric guitars, banjos, and kotos) and even
drumlike timbres [?]. Nyquist has an implementation in the function pluck.

Here’s a simplified view of what happens when we pluck a string: At first
the string is highly energized and it vibrates, creating a fairly complex (meaning
rich in harmonics) sound wave whose fundamental frequency is determined by
the mass and tension of the string. Gradually, thanks to friction between the air
and the string, as well as the dissipation of energy in the form of sound waves,
the string’s energy is depleted. The higher frequencies tend to lose energy the
fastest, so the wave becomes less complex as it decays, resulting in a purer tone
with fewer harmonics. After some amount of time all of the energy from the pluck
is gone, and the string stops vibrating.

If you have access to a stringed instrument, particularly one with some very
low notes, give one of the strings a good pluck and see if you can see and hear
what’s happening based on the description above.

1When I was an undergraduate at Rice University, a graduate student was working with a PDP-
11 mini-computer with a vector graphics display. There were digital-to-analog converters to drive
the display, and the student had connected them to a stereo system to make a primitive digital audio
system. I remember his description of the synthesis system he used, and it was exactly the Karplus-
Strong algorithm, including initializing the buffer with random numbers. This was in the late 1970s,
so it seems Karplus and Strong reinvented the algorithm, but certainly deserve credit for publishing
their work.

2

This pdf for ICM students only - ebook
and paperback available from amazon.com



11.3.1 How a Computer Models a Plucked String with the Karplus-
Strong Algorithm

Now that we have a physical idea of what happens in a plucked string, how can we
model it with a computer? The Karplus-Strong algorithm does it like this: first we
start with a buffer full of random values—noise. (A buffer is just some computer
memory (RAM) where we can store a bunch of numbers.) The numbers in this
buffer represent the initial energy that is transferred to the string by the pluck. The
Karplus-Strong algorithm looks like this:

Yt =
1
2
(Yt−p +Yt−p−1)

Here, p is the period or length of the buffer, t is the current sample count, and
Y is the output of the system.

To generate a waveform, we start reading through the buffer and using the
values in it as sample values. If we were to just keep reading through the buffer
over and over again, we would get a complex, periodic, pitched waveform. It
would be complex because we started out with noise, but pitched because we
would be repeating the same set of random numbers. (Remember that any time
we repeat a set of values, we end up with a pitched sound.) The pitch we get
is directly related to the size of the buffer (the number of numbers it contains)
we’re using, since each time through the buffer represents one complete cycle (or
period) of the signal.

Now, here’s the trick to the Karplus-Strong algorithm: each time we read a
value from the buffer, we average it with the last value we read. It is this averaged
value that we use as our output sample. (See Figure 11.2.) We then take that aver-
aged sample and feed it back into the buffer. That way, over time, the buffer gets
more and more averaged (this is a simple filter, like the averaging filter, Equation
??). Let’s look at the effect of these two actions separately.

Figure 11.2: Schematic view of a computer software implementation of the basic
Karplus-Strong algorithm. For each note, the switch is flipped and the computer
memory buffer is filled with random values (noise). To generate a sample, values
are read from the buffer and averaged. The newly calculated sample is both sent
to the output stream and fed back into the buffer. When the end of the buffer is
reached, we simply wrap around and continue reading at the beginning. This sort
of setup is often called a circular buffer. After many iterations of this process, the
buffer’s contents will have been transformed from noise into a simple waveform.
If you think of the random noise as a lot of energy and the averaging of the buffer
as a way of lessening that energy, this digital explanation is not all that dissimilar
from what happens in the real, physical case. Thanks to Matti Karjalainen for this
graphic.

3

This pdf for ICM students only - ebook
and paperback available from amazon.com



11.3.2 Averaging and Feedback
First, what happens when we average two values? Averaging acts as a low-pass
filter on the signal. Since high frequencies have a high rate of change, averaging
has a bigger effect on high frequencies than low ones. So, averaging a signal
effectively reduces high frequencies.

The “over time” part is where feeding the averaged samples back into the
buffer comes in. If we were to just keep averaging the values from the buffer
but never actually putting the average back into the buffer, then we would be
stuck with a static waveform. We would keep averaging the same set of random
numbers, so we would keep getting the same results.

Instead, each time we generate a new sample, we store it back into the buffer.
That way our waveform evolves as we move through it. The effect of this low-pass
filtering accumulates over time, so that as the string “rings,” more and more of the
high frequencies are filtered out of it. Figure 11.3 illustrates how the contents
of the Karplus-Strong buffer changes and decays over time. After enough times
through the process, the signal has been averaged so many times that it reaches
equilibrium—the waveform is a flat line and the vibration has died out.

Figure 11.3: Applying the Karplus-Strong algorithm to a random waveform. Af-
ter 60 passes through the filter/feedback cycle, all that’s left of the wild random
noise is a gently curving wave. The result is much like what we described in a
plucked string: an initially complex, periodic waveform that gradually becomes
less complex over time and ultimately fades away.

Physical models generally offer clear, “real world” controls that can be used
to play an instrument in different ways, and the Karplus-Strong algorithm is no
exception: we can relate the buffer size to pitch, the initial random numbers in
the buffer to the energy given to the string by plucking it, and the low-pass buffer
feedback technique to the effect of air friction on the vibrating string.

11.4 Waveguide Model
Now, we consider another model of the string, called the waveguide model, in-
troduced by Julius Smith. In a real string, waves travel down the string until they
reach the end where the wave is reflected and travels back in the opposite direction.

4

This pdf for ICM students only - ebook
and paperback available from amazon.com



A vibrating string is actually a wave travelling up and down the string, reflecting
at both ends, and the left-going and right-going waves sum through superposition
to determine the displacement of the string at any given location and time.

It is easy to model wave travel in one direction: we simply delay the samples
by storing incoming samples in an array (wrapping around when we reach the
end), and reading out older samples. This allows a delay up to the length of the
array. If we ignore friction and other losses, a string carrying a waveform can be
modeled as a delay.

To model left-going and right-going waves, we simply use two one-way mod-
els, i.e. two delays. The output of one delay connects to the input of the other.
(See Figure 11.4.) If we want the amplitude of the string at some particular point,
we access both delays (the left-going and right-going wave models) and sum the
amplitudes.

11.4.1 “Lumped” Filters
Now, what about losses? In a continuous string, there should be loss at every step
of the way through the string. Since this would be computationally expensive, we
use a shortcut and compute the total losses for the entire trip from one end of the
string to the other. This can be expressed as a filter that we can apply to the output
of the delay. This so-called “lumped” filter is efficient and can give the same effect
as accumulating tiny losses at each sample of delay.

Figure 11.4: A waveguide model. The right-going and left-going wave, which are
superimposed on a single string, are modeled separately as simple delays. The
signal connections at the ends of the delays represent reflections. A waveguide
can also model a column of air as in a flute.

11.5 Mechanical Oscillator
To make a sustained sound, we must overcome the losses in the waveguide. The
case of the bowed string is probably the easiest to understand, so we will start
there. Figure 11.5 illustrates the oscillation in a bowed string. The bow alternately
sticks to and slips across the string. Rather than reaching a steady equilibrium
where the bow pulls the string to some steady stretched configuration, the “slip”
phase reduces friction on the the string and allows the string to move almost as if
were plucked. Interestingly, string players put rosin on the bow, which is normally
sticky, but when the string begins to slide, the rosin heats up and a molecular level
of rosin liquifies and lubricates the bow/string contact area until the string stops
sliding. It’s amazing to think that rosin on the string and bow can melt and re-
solidify at audio rates!

5

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 11.5: A bowed string is pulled by the bow when the bow sticks to the
string. At some point the bow does not have enough friction to pull the string
further, and the string begins to slip. The sliding reduces the friction on the
string, which allows it to stretch in opposition to the bowing direction. Finally, the
stretching slows the string and the bow sticks again, repeating the cycle. (From
http://physerver.hamilton.edu/courses/Fall12/Phy175/ClassNotes/Violin.html)

11.5.1 McIntyre, Woodhouse (1979) + Schumacher (1983)
An important advance in physical models came from McIntyre and Woodhouse
who resorted to models to help understand the nature of oscillation in acoustical
instruments. Later, Schumacher, a physics professor at Carnegie Mellon Uni-
versity, visited McIntyre and Woodhouse to learn more about their work and the
three physicists wrote a paper that formed the basis for a lot of work in the field
of Computer Music.

Their model follows the basic ideas we have outlined so far. Rather than a bi-
directional waveguide, they combined the two delays into one as shown in Figure
11.6, with a single low-pass filter to model losses over the entire loop. Since the
model is for a woodwind rather than a bowed string, the delay is considered to
represent a traveling pressure wave rather than string displacement. McIntyre,
Woodhouse and Schumacher added a non-linear element to generate oscillation.

Figure 11.6: McIntyre Woodhouse model consisting of a delay representing sound
traveling through the bore of a clarinet and a filter representing the losses over the
round trip. The figure shows that the single delay is equivalent to a bi-directional
waveguide with perfect reflection at one end.

6

This pdf for ICM students only - ebook
and paperback available from amazon.com



11.5.2 Smith: Efficient Reed-Bore and Bow-String Mechanisms
(ICMC 86)

Julius Smith was influenced by McIntyre, Woodhouse and Schumacher and de-
veloped computer music instruments that model the clarinet and violin.

Figure 11.7 shows Smith’s clarinet model. It includes a waveguide with low-
pass filter (-LP in the figure). At the left side of the figure is a model of the reed,
which has non-linear behavior that enables oscillation. A clarinet reed is a thin,
flat, flexible plate that vibrates over an opening to the clarinet’s body or bore. The
reed acts as a valve to let air in when the reed is up or open, and to block the air
when the reed is down or closed.

Figure 11.7: Clarinet model

To understand oscillation in the clarinet model, we can follow the “story” of
one period. To being with, the reed is open and pressure from the mouth enters
the clarinet. The pressure also closes the reed valve, at least to some extent. The
high pressure front travels to the bell, the flare at the end of the clarinet, where the
pressure is reflected. The reflection is inverted, so now the pressure front is neg-
ative. The negated pressure wave returns to the reed, where it is reflected again.
This time, the reflection does not invert the wave because this end is effectively
closed. The negative pressure acts to close the reed even further. The negative
pressure returns to the bell, is inverted again and reflects back to the reed as a
positive pressure wave. This positive pressure tends to open the reed, allowing
air through the reed valve, which reinforces the positive pressure wave, and an-
other cycle begins. If the addition of energy or pressure compensates for losses, a
sustained oscillation will result.

Figure 11.8 illustrates a bowed string model. In this model, the bow is not
at the end of the string, so there is one waveguide from the bow to the bridge
(where strings are anchored over the body) and one waveguide from the bow to
the nut (where strings are anchored at the end of the fingerboard). The bow has
a non-linear element (ρ in the figure) that models the change in friction between
the stick and slip phases.

Also, the model includes a filter between the bridge and the output. In a violin,
the bridge transfers vibration from strings to the body, and the body radiates sound
into the room. The body has resonances and radiates in a frequency-dependent
manner, so a filter to model the transfer of sound from bridge to room is important
to getting a violin-like sound.

7

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 11.8: Bowed String Model

11.6 Flute Physical Model
Figure 11.9 is a simple model for a flute, showing a single delay that models the
round-trip through the flute, a low-pass filter (LP) to model the losses, and a high-
pass filter (HP) to model radiation into the room.

Figure 11.9: Flute Physical Model

Figure 11.10 shows a more elaborate model that includes a mouthpiece to
drive sustaining oscillation. The input to the mouthpiece is the sum of a smooth
pressure envelope (the breath) and some random noise (turbulence). As with other
models, there must be some non-linearity or the model will simply settle into a
steady state. In this case, the non-linearity is x− x3, which is simple but enough
to allow oscillation to occur.

Figure 11.10: Flute Physical Model

11.7 Physical Models in Nyquist
Nyquist has a number of built-in physical models. Many of them come from the
Synthesis Tool Kit (STK).

8

This pdf for ICM students only - ebook
and paperback available from amazon.com



pluck(pitch, dur, final-amp) is an extended Karplus-Strong plucked string
model. The extension inserts a filter into the loop (besides the simple averaging
filter we learned about) to allow sub-sample delays needed for accurate tuning.
In addition, the rate of decay can be modified by the optional parameters dur and
final-amp. Increasing either or both parameters lowers the decay rate. You might
want to multiply by an envelope to avoid a click at the end if the final-amp is high.

clarinet(step, breath-env) is a basic STK clarinet model. There are sev-
eral variations on this model in Nyquist that allow continuous control over fre-
quency, breath envelope, vibrato, reed-stiffness, and noise through additional pa-
rameters. See the Nyquist Reference Manual for details.

sax(step, breath-env) is a basic STK saxophone model (called “saxophony”).
As with clarinet, there are variations with additional parameters.

Other models can be found in the Nyquist Reference Manual.

11.8 Commuted Synthesis
One of the problems with physical models of guitars, violins, and pianos is that vi-
brating strings excite a complex 3-dimensional body that is computationally hard
to simulate. We can assume that the body is a kind of complex filter. We can char-
acterize the body by tapping it at the bridge or point where the string is attached
and measuring the impulse response.

Now, one way to model the body is to simply convolve the string force with
the body’s impulse response. In other words we just filter the string with the body
filter and we are done. But convolution is expensive, so researchers thought of
another approach.

Consider a piano model with a hammer model that transmits force to a string
model, the string model transmits force to a bridge, and the body model filters the
bridge force to obtain an output. Now, the string and body are both just filters!
Multiplication and convolution and linear filters are all commutative (it’s all more-
or-less the same thing), so we can switch the order of the string and body filters.
This makes no sense physically, but in our simulation, instead of driving the string
with an impulse (as if hit by a hammer), we can drive the string with the impulse
response of the body! Thus, for every note, we just have to “play” the impulse
response into the string model, saving the need for a complex body filter on the
output.

For strings, the commuted synthesis model is a little more complex because
the bow is repeatedly pumping energy into the string. We need to run a bowed
string model to detect when the bow slip occurs. Then, we treat that as the driving
impulse, and every time the bow slips, we drive a second string model with the
violin body impulse response. We take the output from this second string model.

11.9 Electric Guitar Model
Charles R. Sullivan developed an interesting guitar model [?]. His work was mo-
tivated more by obtaining usable control than by being a faithful model.

The basic model is shown in Figure 11.11, and you can see that this is closely
related to the Karplus-Strong model. The low-pass filter determines the decay rate
of the string and can also change the effective length (and frequency) of the string
by inserting additional delay. In this model, an FIR filter is used:

yn = a0xn +a1xn−1 +a2xn−2

but this potentially has gain at zero Hz (DC).

9

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 11.11: Electric Guitar Model by Charles R. Sullivan. The model is based
on Karplus-Strong, but the low-pass filter is customized and the model allows
continuous input through the summation node to allow for plucking while the
string is still vibrating and feedback.

11.9.1 Loop Filter Design
To eliminate DC, we can add a high-pass filter:

yn = a0xn +a1xn−1 +b1yn−1

We also want to provide continuous tuning, for which we need a sub-sample delay.
Simple linear interpolation:

yn = c0xn + c1xn−1

can be used, but this also produces attenuation (low-pass filter), so we can adjust
the loop filter (FIR) to provide only the additional attenuation required.

After all this, the model is still not perfect and might require a compensating
boost at higher frequencies, but Sullivan decided to ignore this problem: Some-
times higher frequencies will suffer, but the model is workable.

11.9.2 Tuning and Glissandi
For tuning, we can just round the desired delay length to an integer number of
samples and use interpolation to add the remaining fractional length. To achieve
glissando, where the pitch changes continuously, we slowly change c0, c1 in the
interpolator. When one coefficient reaches 1, we can change the delay length by
1, flip c0, c1, and there is no glitch, but we are ready to continue the glissando.

However, changing the loop length will require a change in the loop FIR fil-
ter. It is expensive to recalculate all the filters every sample, so Sullivan updates
the filters once per period. There may be small artifacts, but these will generate
harmonics that are masked by the string harmonics.

11.9.3 Distortion
In electric guitars, distortion of a single note just adds harmonics, but distortion
of a sum of notes is not the sum of distorted notes: distortion is not linear, so all
those nice properties of linearity do not apply here.

Sullivan creates distortion using a soft clipping function so that as amplitude
increases, there is a gradual introduction of non-linear distortion. The signal is
x and the distorted signal is F(x) in the following equation, which is plotted in
Figure 11.12:

F(x) =


2
3 x ≥ 1
x− x3

3 −1 < x < 1
− 2

3 x ≤−1

10

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 11.12: Distortion functions. At left is “hard clipping” where the signal is
unaffected until it reaches limits of 1 and -1, at which points the signal is limited
to those values. At right is a “soft clipping” distortion that is more like analog
amplifiers with limited output range. The amplification is very linear for small
amplitudes, but diminishes as the signal approaches the limits of 1 and -1.

11.9.4 Feedback
A wonderful technique available to electric guitarists is feedback, where the am-
plified signal is coupled back to the strings which then resonate in a sustained
manner. Figure 11.13 illustrates Sullivan’s configuration for feedback. There are
many parameters to control gain and delay. Sullivan notes that one of the inter-
esting things about synthesizing guitar sounds with feedback is that even though
it is hard to predict exactly what will happen, once you find parameter settings
that work, the sounds are very reproducible. One guiding principle is that the in-
strument will tend to feedback at periods that are multiples of the feedback delay.
This is quite different from real feedback with real guitars, where the player must
interact with the amplifier and guitar, and particular sounds are hard to reproduce.

Figure 11.13: Feedback is achieved by feeding some of the output through a delay
and back into each string model.

11.9.5 Initializing the String
When plucking a guitar string in this model, how should we initialize the string?
In the Karplus-Strong model, strings are just initialized with random numbers,
but this is not necessary, and it can be more interesting to simulate plucking as
displacing the string at a particular point and releasing it. Plucking closer to the
end of the string gives a brighter sound (try it if you have a guitar)! Figure 11.14
(a) shows the desired geometry of the initial string configuration. In the light
of what we know about waveguides, this initial position must be split as right-

11

This pdf for ICM students only - ebook
and paperback available from amazon.com



and left-going waves as shown in Figure 11.14 (b). If there is a single delay
(as in Karplus-Strong), we need to concatenate the right- and left-going wave
configurations, resulting in an initial value as shown in Figure 11.14 (c).

Figure 11.14: Initializing the string. The physical string shape (a) contains both
left- and right-going waves (b), so we need to combine them to get a full round-
trip initial waveform (c).

11.9.6 Additional Features
Sullivan’s electric guitar model is interesting because it shows how models can
be extended incrementally to incorporate various features, either for study or for
additional sound generation and control. There are still more things one could do
with this model, including:

• Adding guitar body resonances,

• Coloration and distortion of guitar amplifiers,

• Effects processors, including:

– Distortion,

– Wah-wah pedals,

– Chorus, etc.

11.10 Analysis Example
One of the challenges of physical models is that we need many parameters to
make the model behave like real acoustic instruments. In some cases, parameters

12

This pdf for ICM students only - ebook
and paperback available from amazon.com



are obtained by trial-and-error, or else calculated, e.g. given a desired pitch, we
can calculate the length of a waveguide.

However, it is interesting to estimate parameters from real sounds, and doing
this enables us to check on whether the model is really capturing the behavior of
the acoustic instrument. We present an example of the analysis of acoustic guitar
sounds to estimate physical model parameters. This example should give some
idea of how parameter estimation can be approached. The word estimation should
be emphasized—we rarely get the chance to measure anything exactly or directly.

In Figure 11.15, we see a plot of the amplitudes of harmonics of a plucked
guitar string as they decay over time. Since decay is mainly due to losses as the
wave travels up and down the string, we can fit lines to the curves and estimate
the loss as a function of frequency. (Note that the decay should be exponential, so
by plotting on a dB (log) scale, the decays appear as straight lines.)

After measuring the decay at different frequencies, we can fit a filter to the
data, as shown in the lower half of the figure. If the filter is simple as shown, the
fit will not be perfect, but measurement errors will tend to average out and the
overall trend of the filter is likely to be well-estimated. Alternatively, one could
fit a complex filter exactly to all the data points, but this would run the risk of
“overfitting,” or incorporating measurement errors into the model.

Figure 11.15: Analysis Example, from Karjalainen, Valimaki, and Janosy [?].

13

This pdf for ICM students only - ebook
and paperback available from amazon.com



11.10.1 Driving Force
Another part of the model we might like to measure is the driving force on the
string. After fitting a filter to the string recording, we can create an inverse filter,
apply that to the recording, and end up with a “residual” that represents the input.
Then, we can drive the string model with the residual to get a realistic sound.

11.11 2D Waveguide Mesh
The 1-dimensional waveguide can be extended to 2 or 3 dimensions. This adds a
lot of computation, but allows us to model plates and drums in the 2-D case, and
resonant chambers and wind instruments in the 3-D case.

Figure 11.16 shows a 2-D waveguide mesh and the modeled propagation of a
wave over a surface in work by Van Duyne and Smith.

Figure 11.16: 2D Waveguide Mesh and some some simulation results.

11.12 Summary
Physical models simulate physical systems to create sound digitally. A common
approach is to model strings and bores (in wind instruments) with recirculating
delays, and to “lump” the losses in a filter at some point in the loop. Non-linear
elements are added to model how a driving force (a bow or breath) interacts with
the wave in the recirculating delay to sustain an oscillation. Digital waveguides
offer a simple model that separates the left- and right-going waves of the medium.

11.12.1 Advantages of Physical Modeling
One advantage of physical models is that non-linear vibrating systems have com-
plex behaviors. Simulations can create complex and interesting behaviors that
tend to arise naturally from models. In spite of potentially complex behavior,
physical models tend to have a relatively small set of controls that are meaningful
and intuitively connected to real-world phenomena and experience. Models also
tend to be modular. It is easy to add coupling between strings, refine a loop filter,
etc. to obtain better sound quality or test theories about how instruments work.

14

This pdf for ICM students only - ebook
and paperback available from amazon.com



11.12.2 Disadvantages of Physical Models
On the other hand, the real 3-D world resists simplifications. For example, vi-
olin bodies are very complex and perceptually important. When simplifications
break down, physical model computation becomes very high. For example, there
are experiments using 3-D waveguides models of brass instruments that run on
supercomputers much slower than real time.

Control is also difficult. Just as real instruments require great skill and prac-
tice, we should not expect simple inputs will immediately result in great sounds.
It is difficult to invert recorded sounds to determine the control required to pro-
duce them. Consider all the muscles and motions involved in playing the violin
or trumpet, or the fact that it takes years to become an accomplished performer
on these instruments. One answer to this problem is that physical models should
form the basis of new instruments that can be controlled in real-time by humans.
These instruments might be as difficult to play as acoustic instruments, but they
might have interesting new sounds and capabilities worth the learning effort.

In short, physical models are models and not necessarily even realistic simu-
lations. Therefore, the approach is sometimes called physics-inspired or physics-
based modeling. In spite of limitations of this approach, the variety of ways in
which sounds are created in the real world has inspired a wealth of new methods
for the world of digital audio. In the next section, we consider models that take
their inspiration from the perspective of the sound itself or the listener rather than
the sound source.

15

This pdf for ICM students only - ebook
and paperback available from amazon.com


	Physical Modeling
	Introduction
	Mass-Spring Model
	Karplus-Strong Plucked String Algorithm
	How a Computer Models a Plucked String with the Karplus-Strong Algorithm
	Averaging and Feedback

	Waveguide Model
	``Lumped'' Filters

	Mechanical Oscillator
	McIntyre, Woodhouse (1979) + Schumacher (1983)
	Smith: Efficient Reed-Bore and Bow-String Mechanisms (ICMC 86) 

	Flute Physical Model
	Physical Models in Nyquist
	Commuted Synthesis
	Electric Guitar Model
	Loop Filter Design
	Tuning and Glissandi
	Distortion
	Feedback
	Initializing the String
	Additional Features

	Analysis Example
	Driving Force

	2D Waveguide Mesh
	Summary
	Advantages of Physical Modeling
	Disadvantages of Physical Models



