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Chapter 10

Acoustics, Perception, Effects

Topics Discussed: Pitch vs. Frequency, Loudness vs. Amplitude, Localiza-
tion, Linearity, Reverberation, Echo, Equalization, Chorus, Panning, Dynamics
Compression, Sample-Rate Conversion, Convolution Reverberation

10.1 Introduction

Acoustics and perception are very different subjects: acoustics being about the
physics of sound and perception being about our sense and cognitive processing
of sound. Though these are very different, both are very important for computer
sound and music generation. In sound generation, we generally strive to create
sounds that are similar to those in the real world, sometimes using models of how
sound is produced by acoustic instruments. Alternatively, we may try to create
sound that will cause a certain aural impression. Sometimes, an understanding of
physics and perception can inspire sounds that have no basis in reality.
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Figure 10.1: Sound is vibration or air pressure fluctuations.
(Credit: mediacollege.com)

Sound is vibration or air pressure fluctuations (see Figure 10.1). We can hear
small pressure variations, e.g. 0.001 psi (Ibs/in®) for loud sound. (We are pur-
posefully using English units of pounds and inches because if you inflate a bicycle
tire or check tires on an automobile — at least in the U.S. — you might have some
idea of what that means.) One psi ~ 6895 Pascal (Pa), so 0.001 psi is about 7
Pascal. At sea level, air pressure is 14.7 pounds per square inch, while the cabin
pressure in an airplane is about 11.5 psi, so 0.001 (and remember that is a loud
sound) is a tiny tiny fraction of the nominal constant pressure around us. Changes
in air pressure deflect our ear drum. The amplitude of deflection of ear drum is



about diameter of hydrogen atom for the softest sounds. So we indeed have a
extremely sensitive ears!

What can we hear? The frequencies that we hear range over three orders of
magnitude from about 20 to 20 kHz. As we grow older and we are exposed to
loud sounds, our high frequency hearing is impaired, and so the actual range is
typically less.

Our range of hearing, in terms of loudness, is about 120 dB, a power ratio of
10'2, measured from threshold of hearing to threshold of pain (discomfort from
loud sounds). In practical terms, our dynamic range is actually limited and often
determined by background noise. Listen to your surroundings right now and listen
to what you can hear. Anything you hear is likely to mask even softer sounds,
limiting your ability to hear them and reducing the effective dynamic range of
sounds you can hear.

We are very sensitive to the amplitude spectrum. Figure 10.2 shows a spectral
view that covers our range of frequency, range of amplitude, and suggests that the
shape of the spectrum is something to which we are sensitive.

~120dB

~20KHz

Figure 10.2: The actual spectrum shown here is not important, but the graph cov-
ers the range of audible frequencies (about 20KHz) and our range of amplitudes
(about 120 dB). We are very sensitive to the shape of the spectrum.

Real-world sounds are richly complicated and full of information and detail.
We have seen many synthesis algorithms that produce very clean, simple, spe-
cific spectra and waveforms. These can be musically interesting, but they are not
characteristic of sounds in the “real world.” This is important; if you want to syn-
thesize musical sounds that are pleasing to the ear, it is important to know that,
for example, real-world sounds are not simple sinusoids, they do not have constant
amplitude, and so on.

Let’s consider some “real-world” sounds. First, noisy sounds, such as the
sound of “shhhh,” tend to be broadband, meaning they contain energy at almost
all frequencies, and the amount of energy in any particular frequency, or the am-
plitude at any particular time, is random. The overall spectrum of noisy sounds
looks like the top spectrum in Figure 10.3.

Percussion sounds on the other hand, such as a thump, bell clang, ping, or
knock, tend to have resonances, so the energy is more concentrated around certain
frequencies. The middle picture of Figure 10.3 gives the general spectral appear-



ance of such sounds. Here, you see resonances at different frequencies. Each
resonance produces an exponentially decaying sinusoid. The decay causes the
spectral peak to be wider than that of a steady sinusoid. In general, the faster the
decay, the wider the peak. It should also be noted that, depending on the material,
there can be non-linear coupling between modes. In that case, the simple model of
independent sinusoids with exponential decay is not exact or complete (but even
then, this can be a good approximation.)
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Figure 10.3: Some characteristic spectra. Can you identify them? Horizontal axis
is frequency. Vertical axis is magnitude (amplitude). The top represents noise,
with energy at all frequencies. The middle spectrum represents a percussion sound
with resonant or “characteristic” frequencies. This might be a bell sound. The
bottom spectrum represents a musical tone, which has many harmonics that are
multiples of the first harmonic, or fundamental.

Figure 10.4 shows some modes of vibration in a guitar body. This is the top
of an acoustic guitar, and each picture illustrates how the guitar top plate flexes
in each mode. At the higher frequencies (e.g. “j” in Figure 10.4), you can see
patches of the guitar plate move up while neighboring patches move down. If you
tap a guitar body, you will “excite” these different modes and get a collection of
decaying sinusoids. The spectrum might look something like the middle of Figure
10.3. (When you play a guitar, of course, you are strumming strings that have a
different set of modes of vibration that give sharper peaks and a clearer sense of
pitch.)

Pitched sounds are often called fones and tend to have harmonically related
sinusoids. For example, an “ideal” string has characteristic frequencies that form
a harmonic series, as illustrated in Figure 10.5. This can be seen as a special
case of vibrating objects in general, such as the guitar body (Figure 10.4.) The
vibrating string just happens to have harmonically related mode frequencies.

We know from previous discussions that if the signal is purely periodic, then
it has harmonically related sinusoids. In other words, any periodic signal can be
decomposed into a sum of sinusoids that are all multiples of some fundamental
frequency. In physical systems, periodicity is characteristic of some kind of me-
chanical oscillator that is driven by an outside energy source. If you bow a string,
sing a tone, or blow into a clarinet, you drive an oscillator with a constant source
of energy, and almost invariably you end up with a stable periodic oscillation.

In summary, there are two ways to obtain harmonic or near-harmonic partials
that are found in musical tones: One is to strike or pluck an object that has modes
of vibration that just happen to resonate at harmonic frequencies. An example is
a piano string or chime. The other is to drive oscillation with a steady input of
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Figure 10.4: Modes of vibration in an acoustic guitar body.
(Credit: http://michaelmesser.proboards.com/thread/7581/resonator-cone-physics)
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Figure 10.5: Modes of vibration in a stretched string. In an “ideal” string, the
characteristic frequencies are multiples of the frequency of the first mode. The
modes of vibration are independent, so the “sound” of the string is formed by the

superposition of all the vibrating modes, resulting in a harmonic spectrum.
(Credit: phycomp.technion.ac.il)



energy, as in a bowed string or wind instrument, giving rise to a periodic signal.
In addition to these sounds called “tones,” we have inharmonic spectra and noisy
spectra.

10.2 Perception: Pitch, Loudness, Localization

Having focused mainly on physical properties of sound and sound sources, we
now our attention to our perception of sound. It is important to keep in mind
that our perception does not directly correspond to the underlying physical prop-
erties of sound. For example, two sounds with the same perceived loudness might
have very different amplitudes, and two pitch intervals perceived to be the same
musically could be not at all the same in terms of frequency differences.

10.2.1 Pitch Perception

Pitch is fundamental to most music. Where does it come from? How sensitive are
ears to pitch? Our sense of pitch is strongly related to frequency. Higher frequen-
cies mean higher pitch. Our sense of pitch is enhanced by harmonic partials. In
fact, the connection is so strong that we are unable to hear individual partials. In
most cases, we collect all of these partials into a single tone that we perceive as a
single pitch, that of the lowest partial.

Pitch perception is approximately logarithmic, meaning that when pitch dou-
bles, you hear the pitch interval of one octave. When it doubles again, you hear
the same interval even though now the frequency is four times as high. If we
divide the octave (factor of 2 in frequency) into 12 log-spaced intervals, we get
what are called musical semitones or half-steps. This arrangement of 12 equal
ratios per octave (each one %) is the basis for most Western music, as shown in
the keyboard (Figure 10.6).

Figure 10.6: A piano keyboard. The ratio between frequencies of adjacent keys is
V2.

(Credit: http://alijamieson.co.uk/2017/12/03/describing-relationship-two-notes/)

We can divide a semitone ( ¥/2) into 100 log-spaced frequency intervals called
cents. Often cents are used in studies of tuning and intonation. We are sensitive
to about 5 cents, which is a ratio of about 0.3%. No wonder it is so hard for
musicians to play in tune!

10.2.2 Amplitude

The term pitch refers to perception while frequency refers to objective or physical
repetition rates. In a similar way, loudness is the perception of intensity or ampli-
tude of sound. Here, we introduce some terminology and units of measurement
for amplitude. Below, we will return to the topic of loudness.



There are multiple ways of defining amplitude. One definition is: “a measure
of a periodic function’s change over a single period.” Figure 10.7 illustrates the
three different ways amplitude may be measured:

1. The peak amplitude
2. The peak-to-peak amplitude

3. The root mean square (RMS) amplitude
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Figure 10.7: Three different ways of measuring amplitude. Note: the 4 on the

Figure indicates the length of one period.
Credit: Wikipedia

In specifying amplitude in code, we are mostly using the peak amplitude of a
signal. Thus, the amplitude of a sine wave, y = sin(z), is 1, and the amplitude of
y=2cos(z) is 2. When we multiply an oscillator in Nyquist by an envelope, we’'re
varying the amplitude of that oscillator over time.

Volume

There is no one formal definition for what the volume of sound means. Generally,
volume is used as a synonym for loudness. In music production, adjusting the
volume of a sound usually means to move a volume fader on e.g. a mixer. Faders
can be either linear or logarithmic, so again, it is not exactly clear what volume
means (i.e. is it the fader position, or the perceived loudness?).

Power

Power is the amount of work done per unit of time; e.g. how much energy is
transferred by an audio signal. Hence, the average power P is the ratio of energy
E to time t: P = E/t. Power is usually measured in watts (W); which are joules (J)
per second: J/s = W. The power of a sound signal is proportional to the squared
amplitude of that signal. Note that in terms of relative power or amplitude, it does
not really matter whether we think of amplitude as the instantaneous amplitude
(i.e. the amplitude at a specific point in time), or the peak, the peak-to-peak,
or the root mean square amplitude over a single period. It makes no significant
difference to ratios.

Pressure

In general, the pressure p is the amount of force F applied perpendicularly (nor-
mal) to a surface area divided by the size a of that area: p = F /a. Pressure is
normally measured in pascal (Pa), which is newtons (N) per square meter. Thus,
Pa=N/m?.



Intensity

Intensity [ is the energy E flowing across a unit surface area per unit of time t:
1= %% For instance, the energy from a sound wave flowing to an ear. As the
average power P = E/t, we can express the intensity as I = P/a, meaning the
power flowing across a surface of area a. The standard unit area is one square

meter, and therefore we measure intensity in W /m?; i.e. watts per square meter.

Range of Human Hearing

Just as the frequency range of the human ear is limited, so is the range of intensity.
For a very sensitive listener, and a 1 kHz frequency:

* The threshold of hearing #;, = 10~ 1?W /m?

* The limit of hearing (due to pain and injury caused by sound) is [, = 1W /m?
(the threshold of pain).

The perceptual range of intensity for a 1 kHz frequency is an impressive
In/th = 1/10712 = 10'2, or a trillion to one.

The Bel Scale

The bel, abbreviated B (note capitalizations), is a sound intensity scale named in
honor of the renowned Alexander Graham Bell (1847-1922). Given the enormous
range of human hearing, one bel is defined as a factor of 10 in intensity or power
as follows:

1
bels = loglo 7
0

where [ is intensity or power and Iy is a reference. In other words, bel is the log
ratio of intensity or power. Measuring the range of intensity for human hearing H
in bels, we get

I
Hbel:loglot—h =12
h

For sound, we measure intensity, but in other situations, such as an electrical
signal, we measure total power, e.g. as watts, since there is no area to divide by.
Since bel (B) is a ratio, the units cancel out, so we can use the bel for both intensity
and power.

The Decibel Scale (dB)

Using just a range H = 12 to express the entire range of hearing is inconvenient,
S0 it is customary to use decibels, abbreviated dB, instead. One bel is 10 dB. The
intensity range of human hearing is therefore 120 dB.

Decibels for Comparing Sound Intensity Levels

Decibels are most commonly used to compare the intensity levels of two sounds.
As shown in the definition of bels above, we take the intensity / of some sound
and compare it to a reference intensity Iy. This reference is arbitrary. For example,
instead of using #; as the reference intensity, we could use the limit of hearing /;,,
and thus measure down from pain instead of measuring up from silence. With this
reference, the threshold of hearing becomes -120 dB.



Decibels for Comparing Amplitude Levels

A common confusion arises when working with intensity and amplitudes. We
just saw that given an intensity ratio », we can express the ratio in decibels using
10log;or. This also works for a ratio of power because power and intensity are
proportional. However, when we are working with amplitudes, this formula does
not apply. Why? Because the decibel is a measure of power or intensity ratio.
Since power is proportional to the square of amplitude, a different formula must
be used for amplitudes. For two amplitudes A and B, we can use the power formula
if we square them. Then we can simplify the expression:

A? A, A
dB = lOlOglO ﬁ = 1010g10(E) = ZOIOgIOE
Main idea: for power or intensity we use 10log,ratio, but for amplitudes,
we must use 20log, ratio.

Other dB Variants
You see the abbreviation dB in many contexts.

* dBa uses the so-called A-weighting to account for the relative loudness
perceived by the human ear; based on equal-loudness contours.

* dBb and dBc are similar to dBa, but apply different weighting
schemes.

* dBm (or dBmW) is the power ratio in dB of a measured power referenced to
one milliwatt (mW); used e.g. in radio, microwave and fiber optic networks
as a measure of absolute power.

¢ dB SPL — see below.

Amplitude and Gain in Recording Equipment

In a music studio, we usually want to measure down from the limit of the loud-
est sound that can be recorded without introducing distortion from the recording
equipment. This is why it is standard for e.g. mixing consoles and music software
to use volume faders and meters that show negative dB. In this context, 0 dB is
the upper limit for recording without distortion; let’s call it the limit of recording
= [,. Hence, the loudest sound we may record without any distortion has intensity
I = I, and the corresponding dB is 1010g10% = 0 dB. Note that it is customary
for producers of recording gear to leave some amount of head room at the top of
this scale to safeguard against distortion, which is why you’ll see some positive
dB values above 0 dB on meters and faders.

Sound Pressure

Measuring the intensity of a sound signal is usually not practical (or possible); i.e.
measuring the energy flow over an area is tricky. Fortunately, we can measure the
average variation in pressure. Pressure is the force applied normal to a surface
area, so if we sample a sufficiently large area we’ll get a decent approximation;
this is exactly what a microphone does!
It is worth noting that we can relate sound pressure to intensity by the follow-

ing ratio,

Ap?

Vé



where Ap is the variation in pressure, V is the velocity of sound in air, and § is
the density of air. What this tells us is that intensity is proportional to the square
of the variation in pressure.

dB SPL (Sound Pressure Level)

Sound pressure level is defined as the average pressure variation per unit area. The
dB SPL is defined as 20log; P%, where the reference pressure, Py, is 0.00005 Pa,
which is approximately the threshold of hearing at 1 kHz.

The Microphone: Measuring Sound Pressure

Most microphones use electromagnetic induction to transform the sound pressure
applied to a diaphragm into an electrical signal; as shown in Figure 10.8.
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Figure 10.8: Microphone.

(Credit: infoplease.com)

For more information on loudness, dB, intensity, pressure etc., see Musimath-
ics Vol. 1[?].

10.2.3 Loudness

Loudness is a perceptual concept. Equal loudness does necessarily result from
equal amplitude because the human ear’s sensitivity to sound varies with fre-
quency. This sensitivity, the loudness, is depicted in equal-loudness contours for
the human ear; often referred to as the Fletcher-Munson curves. Fletcher and
Munson’s data were revised to create an ISO standard. Both are illustrated in
Figure 10.9 below. Each curve traces changes in amplitude required to maintain
equal loudness as the frequency of a sine tone varies. In other words, each curve
depicts amplitude as a function of frequency at a constant loudness level.
Loudness is commonly measured in phons.
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Figure 10.9: Equal-loudness contours (left-most / lighter) from ISO 226:2003 re-
vision. So-called Fletcher-Munson curves, as measured by Robinson and Dadson,

shown (right-most / darker) for comparison.
Credit: http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/eqloud.html

Phon

Phon expresses the loudness of a sound in terms of a reference loudness. That
is, the phon level of a sound, A, is the dB SPL (defined earlier) of a reference
sound—of frequency 1 kHz—that has the same (perceived) loudness as A. Zero
phon is the limit of audibility of the human ear; inaudible sounds have negative
phon levels.

Rules of Thumb

Loudness is mainly dependent on amplitude, and this relationship is approxi-
mately logarithmic, which means equal ratios of amplitude are more-or-less per-
ceived as equal increments of loudness. We are very sensitive to small ratios of
frequency, but we are not very sensitive to small ratios of amplitude. To double
loudness you need about a 10-fold increase in intensity or about 10 dB. We are
sensitive to about 1 dB of amplitude ratio with careful listening. 1 dB is a change
of about 12%.

The fact that we are not so sensitive to amplitude changes is important to keep
in mind when adjusting amplitude. If you synthesize a sound and it is too soft, try
scaling it by a factor of 2 (about 6 dB). People are often tempted to make small
changes, e.g. multiply by 1.1 to make something louder, but in most cases, a 10%
change is not even audible (less than 1 dB).

Loudness also depends on frequency because we are not so sensitive to very
high and very low frequencies. The Fletcher-Munson Curve contours shown
above are lowest around 4 kHz where we are most sensitive. The curve is low
here because a low amplitude at 4 kHz sounds as loud as higher amplitudes at
other frequencies. As we move to even higher frequencies over on the right, we
become less sensitive once again. The curves trace the combinations of frequency
and amplitude that sound equally loud. If you sweep a sinusoid from low fre-
quency to high frequency at equal amplitude, you will hear that the sound appears
to get louder until you hit around 4 kHz, and then the sound begins to get quieter.
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Depending on how loud it is, you might stop hearing it at some point before you
hit 20 kHz, even if you can hear loud sounds at 20 kHz.

The red (or gray) lines in Figure 10.9 show an update to the Fletcher-Munson
Curve based on new measurements of typical human hearing. It should be noted
that these curves are based on sinusoids. In most music, low pitches actually
consist of a mixture of harmonics, some of which can have rather high frequencies.
So even if you cannot hear the fundamental because it is too low or too quiet, you
might hear the pitch, which is implied by the upper partials (to which you are
more sensitive). This is also why, on your laptop, you can hear a piano tone at the
pitch C> (below the bass clef, with a fundamental frequency of about 65 Hz), even
though your laptop speaker is barely able to produce any output at 65 Hz. You
might try this SAL command, which plays a piano tone followed by a sine tone:

play seq(note(pitch: c2), osc(c2))

It is instructive to listen to this using a quiet volume setting with good headphones.
You should hear the two tones at the same pitch. Then, listen to the same sounds
on your built-in laptop speaker. You will probably not hear the second tone, indi-
cating that your computer cannot produce frequencies that low. And yet, the pitch
of the first tone, even with no fundamental frequency present retains the same
pitch!

10.2.4 Localization

Localization is the ability to perceive direction of the source of a sound and per-
haps the distance of that sound. We have multiple cues for localization, including
relative amplitude, phase or timing, and spectral effects of the pinnae (outer ears).
Starting with amplitude, if we hear something louder in our right ear than our left
ear, then we will perceive that the sound must be coming from the right, all other
things be equal.

We also use relative phase or timing for localization: if we hear something
arrive earlier in our right ear than our left ear, then we will perceive that sound as
coming from the right.

The third cue is produced by our pinnae or outer ears. Sound reflects off the
pinnae, which are very irregularly shaped. These reflections cause some cancel-
lation or reinforcement at particular wavelengths, depending on the direction of
the sound source and the orientation of our head. Even though we do not know
the exact spectrum of the source sound, our amazing brain is able to disentangle
all this information and compute something about localization. This is especially
important for the perception of elevation, i.e. is the sound coming from ahead or
above? In either case, the distance to our ears is the same, so whether the source
is ahead or above, there should be no difference in amplitude or timing. The only
difference is in spectral changes due to our outer ears and reflections from our
shoulders.

All of these effects or cues can be described in terms of filters. Taken together,
these effects are sometimes called the HRTF, or Head-Related Transfer Function.
(A “transfer function” describes the change in the spectrum from source to desti-
nation.) You might have seen some artificial localization systems, including video
games and virtual reality application systems based on HRTF. The idea is, for each
source to be placed in a virtual 3D space, compute an appropriate HRTF and apply
that to the source sound. There is a different HRTF for the left ear and right ear,
and typically the resulting stereo signal is presented through headphones. Ideally,
the headphones are tracked so that the HRTFs can be recomputed as the head turns
and the angles to virtual sources change.
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Environmental cues are also important for localization. If sounds reflect off
walls, then you get a sense of being in a closed space, how far away the walls are,
and what the walls are made of. Reverberation and ratio of reverberation to direct
sound are important for distance estimation, especially for computer music if you
want to create the effect of a sound source fading off into the distance. Instead
of just turning down the amplitude of the sound, the direct or dry sound should
diminish faster than the reverberation sound to give the impression of greater dis-
tance.

Finally, knowledge of the sound source, including vision, recognition etc. is
very important to localization. For example, merely placing a silent loudspeaker in
front of a listener wearing headphones can cause experimental subjects to localize
sound at the loudspeaker, ignoring whatever cues are present in the actual sound!

10.2.5 More Acoustics

The speed of sound is about 1 ft/ms. Sound travels at different speeds at different
altitudes, different temperatures and different humidities, so it is probably more
useful to have a rough idea of the speed of sound than to memorize a precise
number. (But for the record, the speed of sound is 343 m/s in dry air at 20° C.)
Compared to the speed of light, sound is painfully slow. For example, if you stand
in front of a wall and clap, you can hear that the sound reflects from the wall
surfaces, and you can perceive the time for the clap to travel to the wall and reflect
back. Our auditory system merges multiple reflections when they are close in time
(usually up to about 40 ms), so you do not perceive echoes until you stand back
20 feet or so from the reflecting wall.

In most listening environments, we do not get just one reflection, called an
echo. Instead, we get a diffuse superposition of millions of echos as sound scatters
and bounces between many surfaces in a room. We call this reverberation. In
addition to reflection, sound refracts (bends around objects). Wavelengths vary
from 50 feet to a fraction of an inch, and diffraction is more pronounced at lower
frequencies, allowing sound to bend around objects.

Linearity is a very important concept for understanding acoustics. Let’s think
about the transmission of sounds from the source of sound to the listener. We can
think of the whole process as a function F' shown in the equations below, where
¥y = F(x) means that source x is transformed by the room into y at the ear of the
listener. Linearity means that if we increase the sound at the source, we will get a
proportional increase at the listening side of channel F. Thus, F (ax) = aF (x). The
other property, sometimes called the superposition, is that if we have two sources:
pressure signals x| and x,, and play them at the same time, then the effect on the
listener will be the sum of individual effect from x; and x:

F(ax) =aF(x), F(x;+x)=F(x)+F(x)

Why does linearity matter? First, air, rooms, performance spaces are very
linear. Also, many of processes we used on sounds such as filters are designed
to be linear. Linearity means that if there are two sound sources playing at the
same time, then the signal at the listening end is equivalent to what you get from
one sound plus what you get from the other sound. Another interesting thing
about linearity is that we can decompose a sound into sinusoids or components
(i.e. compute the Fourier transform). If we know what a linear system does to
each one of those component frequencies, then by the superposition principle,
we know what the system does to any sound, because we can: break it up into
component frequencies, compute the transfer function at each of the frequencies
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and sum the results together. That is one way of looking at what a filter does. A
filter associates different scale factors with each frequency, and because filters are
linear, they weight or delay frequencies differently but independently. If we add
two sounds and put them through the filter, the result is equivalent to putting the
two sounds through the filter independently and summing the results.

10.2.6 Summary: Acoustics and Perception

Now we summarize this discussion of acoustics and perception. Acoustics refers
to the physics of sound, while perception concerns our sense of sound. As summa-
rized in Figure 10.10, pitch is the perception of (mainly) frequency, and loudness
is the perception (mainly) of amplitude or intensity. Our perception of pitch and
loudness is roughly logarithmic with frequency and amplitude. This relationship
is not exact, and we saw in the Fletcher-Munson Curve that we are more sensi-
tive to some frequencies than others. Generally, everything else we perceive is
referred to as timbre, and you can think of timbre as (mainly) the perception of
spectral shape. In addition to these properties, we can localize sound in space
using various cues that give us a sense of direction and distance.

Pitch Frequency (20-20 kHz range)
Loudness Intensity (120 dB range)
Timbre Spectrum (and other)

Figure 10.10: A comparison of concepts and terms from perception (left column)
to acoustics (right column).

Struck objects typically exhibit characteristic frequencies with exponential de-
cay rates (each mode of vibration has its own frequency and decay). In contrast,
driven oscillators typically exhibit almost exactly periodic signals and hence har-
monic spectra.

Our discussion also covered the speed of sound (roughly 1 ft/ms), transmission
of sound as equivalent to filtering and the superposition principle.

10.3 Effects and Reverberation in Nyquist

There are a lot of effects and processes that you can apply to sound with Nyquist.
Some are described here, and you can find more in the Nyquist Reference Manual.
There are also many sound processing functions you can install with the Nyquist
Extension Manager (in the NyquistIDE).

10.3.1 Delay or Echo

In Nyquist, we do not need any special unit generator to implement delay. We can
directly create delay simply by adding sounds using an offset. Recall that Nyquist
sounds have a built-in starting time and duration which are both immutable, so
applying a shift operator to a sound does not do anything. However, the cue
behavior takes a sound as parameter and returns a new sound that has been shifted
according to the environment. So we usually combine cue with the shift operator
@, and a delay expression has the form:

cue(sound) @ delay
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10.3.2 Feedback Delay

An interesting effect is to not only produce an echo, but to add an attenuated
copy of the output back into the input of the effect, producing a series of echoes
that die away exponentially. There is a special unit generator in Nyquist called
feedback-delay with three parameters: feedback-delay (sound, delay, feed-
back) . Figure 10.11 shows the echo algorithm: The input comes in and is stored
in memory in a first-in-first-out (FIFO) queue; samples at the end of the buffer
are recycled by adding them to the incoming sound. This is an efficient way to
produce many copies of the sound that fade away. The delay parameter must be a
number (in seconds). It is rounded to the nearest sample to determine the length
of the delay buffer. The amount of feedback should be less than one to avoid an
exponential increase in amplitude.

'

4@" delay >

Figure 10.11: Echo algorithm in Nyquist.

Note that the duration of the output of this unit generator is equal to the du-
ration of the input, so if the input is supposed to come to an end and then be fol-
lowed by multiple echos, we need to append silence to the input source to avoid
a sudden ending. The example below uses s-rest () to construct 10 seconds of
silence, which follows the sound.

feedback-delay (seq(sound, s-rest(10)), delay, feedback)

In principle, the exponential decay of the feedback-delay effect never ends, so
it might be prudent to use an envelope to smoothly bring the end of the signal to
Zero:

feedback-delay(seq(sound, s-rest(10)), delay, feedback) *
pwlv(l, d +9, 1, d + 10, 0)

, where d is the duration of sound. The sound is extended with 10 seconds of
silence, so the envelope remains at 1 for the sound duration plus 9 seconds, then
linearly falls to zero at sound duration + 10.

10.3.3 Comb Filter

Consider a feedback delay with a 10 ms delay. If the input is a sinusoid with 10 ms
period (100 Hz), the echoes superimpose on one another and boost the amplitude
of the input. The same happens with 200 Hz, 300 Hz, 400 Hz, etc. sinusoids
because they all repeat after 10 ms. Other frequencies will produce echoes that do
not add constructively and are not boosted much. Thus, this feedback delay will
act like a filter with resonances at multiples of a fundamental frequency, which is
the reciprocal of the delay time. The frequency response of a comb filter looks
like Figure 10.12. Longer decay times gives the comb filter sharper peaks, which
means the output has a more definite pitch and longer “ring.”

The code below shows how to apply a comb filter to sound in Nyquist. A comb
filter emphasizes (resonates at) frequencies that are multiples of the Az parameter.
The decay time of the resonance is given by decay. The decay may be a sound
or a number. In either case, it must also be positive. The resulting sound will
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Figure 10.12: Filter response of a comb filter. The horizontal axis is frequency
and the vertical axis is amplitude. The comb filter has resonances at multiples of
some fundamental frequency.

have the start time, sample rate, etc. of sound. One limitation of comb is that the
actual delay will be the closest integer number of sample periods to 1/hz, so the
resonance frequency spacing will one that divides the sample rate evenly.

comb (sound, decay, hz)

10.3.4 Equalization

Equalization is generally used to adjust spectral balance. For example, we might
want to boost the bass, or boost the high frequencies, or cut some objectionable
frequencies in the middle range. The function nband (input, gains) takes an array
of gains, one for each band, where the bands are evenly divided across the 20—
20kHz range. An interesting possibility is using computed control functions to
make the equalization change over time.

The Equalizer Editor in Nyquist provides a graphical equalizer interface for
creating and adjusting equalizers. It has a number of sliders for different frequency
bands, and you can slide them up and down and see graphically what the frequency
response looks like. You can use this interface to create functions to be used in
your code. Equalizers are named eq-0, eq-1, etc., and you select the equalizer to
edit using a pull-down menu. The “Set” button should be use to record changes.

The following expression in Nyquist is a fixed- or variable-parameter, second-
order midrange equalization (EQ) filter:

eq-band (signal, hz, gain, width)

The hz parameter is the center frequency, gain is the boost (or cut) in dB, and
width is the half-gain width in octaves. Alternatively, hz, gain, and width may be
sounds, but they must all have the same sample rate, e.g. they should all run at the
control rate or at the sample rate.

You can look up filters in the Nyquist manual for many more filters and op-
tions.

10.3.5 Chorus

The chorus effect is a very useful way to enrich a simple and dry sound. Essen-
tially, the “chorus” effect is a very short, time-varying delay that is added to the
original sound. Its implementation is shown in Figure 10.13. The original sound
passes through the top line, while a copy of the sound with some attenuation is
added to the sound after a varying delay, which is indicated by the diagonal arrow.
To implement chorus in Nyquist, you need to first load library
time-delay-fns' and then call the chorus function as shown below.

'In the future, time-delay-fns will be an extension installed with the Extension Manager.
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Figure 10.13: Chorus effect algorithm. A signal is mixed with a delayed copy of
itself. The delay varies, typically by a small amount and rather slowly.

chorus (sound, delay: delay, depth: depth, rate: rate,
saturation: saturation, phase: phase)

Here, a chorus effect is applied to sound. All parameters may be arrays as usual.
The chorus is implemented as a variable delay modulated by a sinusoid shifted by
phase degrees oscillating at rate Hz. The sinusoid is scaled by depth. The delayed
signal is mixed with the original, and saturation gives the fraction of the delayed
signal (from O to 1) in the mix. Default values are delay = 0.03, depth = 0.003,
rate = 0.3, saturation = 1.0, and phase = 0.0 (degrees).
See also the Nyquist Reference Manual for the functions
stereo-chorus and stkchorus.

10.3.6 Panning

Panning refers to the simulation of location by splitting a signal between left and
right (and sometimes more) speakers. When panning a mono source from left to
right in a stereo output, you are basically adjusting the volume of that source in the
left and right channels. Simple enough. However, there are multiple reasonable
ways of making those adjustments. In the following, we shall cover the three most
common ones.

A typical two-speaker stereo setup is depicted in Figure 10.14; the speakers
are placed symmetrically at +45-degree angles, and equidistant to the listener,
who is located at the so-called “sweet-spot,” while facing the speakers.
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Figure 10.14: Speaker positioning and sweet spot.

Note that the range of panning (for stereo) is thus 90 degrees. However, it is
practical to use radians instead of degrees. By convention, the left speaker is at
0 radians and the right speaker is at /2 radians, giving us a panning range of
0 € [0; /2], with the center position at 8 = /4.

Linear Panning

The simplest panning strategy is to adjust the channel gains (volumes) linearly
with inverse correlation.

Main idea: for a stereo signal with gain 1, the gains of the left and
right channels should sum to 1; i.e. L(0)+R(6) = 1.
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With the panning angle 6 € [0; /2] we thus get the gain functions

2
—(1-62)

, and

as plotted in Figure 10.15.
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Figure 10.15: Linear panning.

A drawback of implementing panning in this way is that, even though the
gains L(0) and R(0) always sum to 1, the loudness of the signal is still affected.
Linear panning creates a “hole-in-the-middle” effect, such that the signal is softer
at the middle than at the side-positions. At the center position, where 6 = 7 /4,
we have L(7/4) + R(n/4) = 1. However, when a signal is panned to the cen-
ter, the amplitudes coming from two speakers will typically not sum (unless they
are perfectly in phase). In general, due to reflections and phase differences, the
power is additive.> If we add power (proportional to the squared amplitude) we
get L*(m/4) + R*(n/4) = 0.5 + 0.5 = 0.5. Expressed in dB, measuring down
from the maximum gain (amplitude) of 1 (0 dB), we get 10log;,(0.5)dB = —3dB.
Thus, when a signal is panned to the middle, it sounds 3 dB quieter than when
panned fully left or right!

Constant Power Panning

One way of dealing with the “hole-in-the-middle” effect is to use constant power
panning. Basically, we change the linear functions for L(6) and R(6) to the sine
and cosine functions, letting L(0) = cos(6) and R(0) = sin(0).

Main idea: power is proportional to the squared amplitude, and cos? 4 sin’ =
1.

Thus, L(0) = cos(0) and R(6) = sin(0) yields constant power panning.
As seen in the Figure 10.16, this boosts the center, giving us a gain of cos(w/4) =
sin(rm/4) = 0.71 as opposed to the 0.5 center gain we saw with linear panning.

2This also relates to the law of conservation of energy.
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Now, the power of the signal at the center is L?(7/4) +R*(xt/4) = cos*(x/4) +
sin(7/4) = 1, which is 1010g10(%)dB = 0dB. The per-channel attenuation is
2010g,((0.71) = —3 dB. Thus, the center pan position is boosted by 3 dB? com-
pared to linear panning, and the total power at every pan position is 0 dB.
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Figure 10.16: Constant power panning.

-4.5 dB Pan Law (the compromise)

What if our statement that power is additive is wrong? If amplitudes add, then
the center pan position will get a 3 dB boost. This can happen if you convert
stereo to mono by adding the left and right channels (so anything panned to the
center is now added perfectly in phase), or if you sit in exactly the right spot
for left and right channels to add in phase.* The idea behind the -4.5 dB law
is to split the difference between constant power and linear panning — a kind of
compromise between the two. This is achieved by simply taking the square root

of the product of the two laws, thus we have L(0) = /(5 — 0)%005(9), and

R(8) = {/02sin(0); as plotted in Figure 10.17.

As we can see on the plot, the center gain is now at 0.59, and hence the per-
channel attenuation is 1010g10('51—22)dB = —4.5dB, which is exactly in between
that for the previous two laws. The power of the signal at the center is now
L*(n/4) +R*(w/4) = .59% +.59% = 0.71, corresponding to
1010g10('”21%'592)dB = —1.5dB. If amplitudes are additive when stereo is con-
verted to mono, the center pan signal is boosted by 1.5 dB. When signals are

panned to the center and not heard in phase, the center pan signal is attenuated by
1.5dB.

3In fact, the exact number is not 0.71 but v/2, which in dB is approximately 3.0103. This is so
close to 3 that even formal texts refer to this number as “3 dB,” and a linear factor of 2 is often called
“6 dB” instead of 6.0206. This is similar to calling 1024 bytes “one kilobyte.” If you ever wonder how
a factor of 2 got to be exactly 6 dB, well, it didn’t!

4This still does not violate the law of conservation of energy. In a room, even mono signals cannot
stay in phase everywhere, so the total power is conserved even if there are some “hot spots.”
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Figure 10.17: The -4.5 dB pan law.

Which Pan Law to Use When?

According to a number of sources (and as an interesting historic aside), back in
the 1930’s, the Disney corporation tested different pan laws on human subjects,
and found that constant power panning was preferred by the listeners. Then, in
the 1950’s, the BBC conducted a similar experiment and concluded that the -4.5
dB compromise was the better pan law. Now, we know next to nothing about the
details of those experiments, but their results might make sense if we assume that
Disney’s focus was on movie theaters and the BBC’s was on TV audiences. Let’s
elaborate on that. It all depends on the listening situation. That is, how are the
speakers placed, what is the size of the room, where is the listener placed, and
can we expect the listener to stay in the same place? If the speakers are placed
close to each other in a small room (with very little reverb) or if the listener is in
the sweet spot, then one can reasonably expect that the phases of the signals from
the two speakers will add up constructively (at least at lower frequencies, acting
pretty much as one single speaker (at least at lower frequencies); as depicted in

Figure 10.18.
S
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Figure 10.18: Two speakers in phase acting as one.

In such a case where signals are in phase so that the left and right amplitudes
sum, the sounds that are panned to the center will experience up to 3 dB of boost
with constant power panning but a maximum of only 1.5 dB boost using the -4.5
dB compromise. Thus, the -4.5 dB rule might give more equal loudness panning.
It could also be that the BBC considered mono TV sets where the left and right
channels are added perfectly in phase. In this case, the -4.5 dB compromise gives
a 1.5 dB boost to center-panned signals vs. a 3 dB boost with constant power
panning. (Recall that linear panning is ideal for mono reproduction because the
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center-panned signals are not boosted at all. However, linear panning results in
the “hole-in-the-middle” problem for stereo.)

On the other hand, if the speakers are placed far from each other in a big room,
then the phases will not add up constructively; as seen in Figure 10.19.

*\//} | ;
)

Figure 10.19: Two speakers out of phase; phases do not add constructively.

Furthermore, in this case, the listeners are probably not always placed at the
sweet spot — there are probably multiple listeners placed at different distances and
angles to the speakers (as e.g. in a movie theater). One would expect constant
power panning to produce more uniform loudness at all panning positions in this
situation.

Given the variables of listener position, speaker placement, and possible stereo-
to-mono conversion, there is no universal solution that optimizes panning. Both
constant power panning and the -4.5 dB compromise are widely used, and both
are preferred over linear panning.

Panning and Room Simulation

A more sophisticated approach to panning is to consider that in stereo record-
ing, a left-facing microphone signal is very different from that of a right-facing
microphone. Signal differences have to do with room reflections and the source
location. A sound source at stage left will undergo different modifications get-
ting to each microphone, and similarly for the source at stage right. Thus there
are four different paths from sources to microphones, and that is considering only
two source locations! Some panning systems take these paths into consideration
or even integrate panning with reverberation simulation.

Panning in Nyquist

In Nyquist, panning splits a monophonic signal (single channel) into stereo out-
puts (two channels; recall that multiple channel signals are represented using ar-
rays of sounds), and the degree of left or right of that signal can be controlled by
either a fixed parameter or a variable control envelope:

pan(sound, where)

The pan function pans sound (a behavior) according to where (another behavior or
a number). Sound must be monophonic. The where parameter should range from
0 to 1, where 0 means pan completely left, and 1 means pan completely right. For
intermediate values, the sound is scaled /inearly between left and right.
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10.3.7 Compression/Limiting

A Compression/Limiting effect refers to automatic gain control, which reduces
the dynamic range of a signal. Do not confuse dynamics compression with data
compression such as producing an MP3 file. When you have a signal that ranges
from very soft to very loud, you might like to boost the soft part. Alternatively,
when you have a narrow dynamic range, you can expand it to make soft sounds
much quieter and louder sounds even louder.

" rms 7 —1

Figure 10.20: Compression/Limiting effect. The input signal is analyzed to obtain
the RMS (average) amplitude. The amplitude is mapped to obtain a gain, and
the signal is multiplied by the gain. The solid line shown in the mapping (at
right) is typical, indicating that soft sounds are boosted, but as the input becomes

increasingly loud, the gain is less, reducing the overall dynamic range (i.e. the
variation in amplitude is compressed.)

The basic algorithm for compression is shown in Figure 10.20. The com-
pressor detects the signal level with a Root Mean Square (RMS) detector® and
uses table-lookup to determine how much gain to place on the original signal at
that point. The implementation in Nyquist is provided by the Nyquist Extension
named compress, and there are two useful functions in the extension. The first
one is compress, which compresses input using map, a compression curve prob-
ably generated by compress-map.® Adjustments in gain have the given rise-time
and fall-time. lookahead tells how far ahead to look at the signal, and is rise-
time by default. Another function is agc, an automatic gain control applied to
input. The maximum gain in dB is range. Peaks are attenuated to 1.0, and gain is
controlled with the given rise-time and fall-time. The look-ahead time default is
rise-time.

compress (input, map, rise-time, fall-time, lookahead)

agc (input, range, rise-time, fall-time, lookahead)

10.3.8 Reverse

Reverse is simply playing a sound backwards. In Nyquist, the reverse functions
can either reverse a sound or a file, and both are part of the Nyquist extension
named reverse. If you reverse a file, Nyquist reads blocks of samples from the

5The RMS analysis consists of squaring the signal, which converts each sample from positive or
negative amplitude to a positive measure of power, then taking the mean of a set of consecutive power
samples perhaps 10 to 50 ms in duration, and finally taking the square root of this “mean power” to
get an amplitude.

6 compress-map (compress-ratio, compress-threshold, expand-ratio, expand-threshold,
limit, transition, verbose) constructs a map for the compress function. The map consists of two
parts: a compression part and an expansion part. The intended use is to compress everything above
compress-threshold by compress-ratio, and to downward expand everything below expand-threshold
by expand-ratio. Thresholds are in dB and ratios are dB-per-dB. 0 dB corresponds to a peak amplitude
of 1.0 or RMS amplitude of 0.7. If the input goes above 0 dB, the output can optionally be limited by
setting 1imit: (a keyword parameter) to T. This effectively changes the compression ratio to infinity
at 0 dB.If limit: isnil (the default), then the compression-ratio continues to apply above 0 dB.
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file and reverses them, one-at-a-time. Using this method, Nyquist can reverse very
long sounds without using much memory. See s-read-reverse in the Nyquist
Reference Manual for details.

To reverse a sound, Nyquist must evaluate the whole sound in memory, which
requires 4 bytes per sample plus some overhead. The function
s-reverse (sound) reverses sound, which must be shorter than
*max-reverse-samples* (currently initialized to 25 million samples). This
function does sample-by-sample processing without an efficiently compiled unit
generator, so do not be surprised if it calls the garbage collector a lot and runs
slowly. The result starts at the starting time given by the current environment (not
necessarily the starting time of sound). If sound has multiple channels, a multiple
channel, reversed sound is returned.

10.3.9 Sample-Rate Conversion

Nyquist has high-quality interpolation to alter sample rates. There are a lot of
sample rate conversions going on in Nyquist behind the scenes: Nyquist implicitly
changes the sample rate of control functions such as produced by env and 1fo
from their default sample rate which is 1/20 of the audio sample rate. When you
multiply an envelope by an audio rate signal, Nyquist linearly interpolates the
control function. This is reasonable with most control functions because, if they
are changing slowly, linear interpolation will be a good approximation of higher-
quality signal reconstruction, and linear interpolation is fast. However, if you want
to change the sample rate of audio, for example if you read a file with a 48 kHz
sample rate and you want the rate to be 44.1 kHz, then you should use high-quality
sample-rate conversion to avoid distortion and aliasing that can arise from linear
interpolation.

The algorithm for high-quality sample-rate conversion in Nyquist is a digital
low pass filter followed by digital reconstruction using sinc interpolation. There
are two useful conversion functions:

force-srate(srate, sound)

returns a sound which is up- or down-sampled to srate. Interpolation is linear, and
no pre-filtering is applied in the down-sample case, so aliasing may occur.

resample (snd, rate)

Performs high-quality interpolation to reconstruct the signal at the new sample
rate. The result is scaled by 0.95 to reduce problems with clipping. (Why? Inter-
estingly, an interpolated signal can reconstruct peaks that exceed the amplitude of
the the original samples.)

Nyquist also has a variable sample-rate function:

sound-warp (warp-fn, signal, wrate)

applies a warp function warp-fn to signal using function composition. If the op-
tional parameter wrate is omitted or NIL, linear interpolation is used. Otherwise,
high-quality sample interpolation is used, and the result is scaled by 0.95 to reduce
problems with clipping. Here, warp-fn is a mapping from score (logical) time to
real time, and signal is a function from score time to real values. The result is a
function from real time to real values at a sample rate of *sound-srate*. See
the Nyquist Reference Manual for details about wrate.

To perform high-quality stretching by a fixed ratio, as opposed to a variable
ratio allowed in sound-warp, use scale-srate to stretch or shrink the sound,
and then resample to restore the original sample rate.
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10.3.10 Sample Size Conversion (Quantization)

Nyquist allows you to simulate different sample sizes using the unit generator
quantize:

quantize (sound, steps)

This unit generator quantizes sound as follows: sound is multiplied by steps and
rounded to the nearest integer. The result is then divided by steps. For example, if
steps is 127, then a signal that ranges from -1 to +1 will be quantized to 255 levels
(127 less than zero, 127 greater than zero, and zero itself). This would match the
quantization Nyquist performs when writing a signal to an 8-bit audio file. The
sound may be multi-channel.

10.3.11 Reverberation

A reverberation effect simulates playing a sound in a room or concert hall. Typ-
ical enclosed spaces produce many reflections from walls, floor, ceiling, chairs,
balconies, etc. The number of reflections increases exponentially with time due to
secondary, tertiary, and additional reflections, and also because sound is following
paths in all directions.

Typically, reverberation is modeled in two parts:

* Early reflections, e.g. sounds bouncing off one wall before reaching the
listener, are modeled by discrete delays.

 Late reflections become very dense and diffuse and are modeled using a
network of all-pass and feedback-delay filters.

Reverberation often uses a low-pass filter in the late reflection model because high
frequencies are absorbed by air and room surfaces.

The rate of decay of reverberation is described by RT60, the time to decay
to -60 dB relative to the peak amplitude. (-60 dB is about 1/1000 in amplitude.)
Typical values of RT60 are around 1.5 to 3 s, but much longer times are easy to
create digitally and can be very interesting.

In Nyquist, the reverb function provides a simple reverberator. You will
probably want to mix the reverberated signal with some “dry” original signal, so
you might like this function:

function reverb-mix(s, rt, wet)
return s * (1 - wet) + reverb(s, rt) * wet

Nyquist also has some reverberators from the Synthesis Tool Kit: nrev (similar
to Nyquist’s reverb), jcrev (ported from an implementation by John Chowning),
and prcrev (created by Perry Cook). See the Nyquist Reference Manual for de-
tails.

Convolution-based Reverberators

Reverberators can be seen as very big filters with long irregular impulse responses.
Many modern reverberators measure the impulse response of a real room or con-
cert hall and apply the impulse response to an input signal using convolution (re-
call that filtering is equivalent to multiplication in the frequency domain, and that
is what convolution does).

With stereo signals, a traditional approach is to mix stereo to mono, com-
pute reverberation, then add the mono reverberation signal to both left and right
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channels. In more modern reverberation implementations, convolution-based re-
verberators use 4 impulse responses because the input and output are stereo. There
is an impulse response representing how the stage-left (left input) signal reaches
the left channel or left ear (left output), the stage-left signal to the right channel or
right ear, stage-right to the left channel, and stage-right to the right channel.

Nyquist has a convolve function to convolve two sounds. There is no Nyquist
library of impulse responses for reverberation, but see
www.openairlib.net/, oramics.github.io/sampled/IR/Voxengo/ and other
sources. Convolution with different sounds (even if they are not room responses)
is an interesting effect for creating new sounds.

10.3.12 Summary

Many audio effects are available in Nyquist. Audio effects are crucial in modern
music production and offer a range of creative possibilities. Synthesized sounds
can be greatly enhanced through audio effects including filters, chorus, and delay.
Effects can be modulated to add additional interest.

Panning algorithms are surprisingly non-obvious, largely due to the “hole-in-
the-middle” effect and the desire to minimize the problem. The -4.5 dB panning
law seems to be a reasonable choice unless you know more about the listening
conditions.

Reverberation is the effect of millions of “echoes” caused by reflections off
of walls and other surfaces when sound is created in a room or reflective space.
Reverberation echos generally become denser with greater delay, and the sound
of reverberation generally has an approximately exponential decay.
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