
Introduction to
Computer Music

Week 8

Instructor: Prof. Roger B. Dannenberg

Topics Discussed: FFT, Inverse FFT, Overlap Add,
Reconstruction from Spectral Frames

This pdf for ICM students only - ebook
and paperback available from amazon.com

Chapter 8

Spectral Processing
Topics Discussed: FFT, Inverse FFT, Overlap Add, Reconstruction from
Spectral Frames

8.1 FFT Analysis and Reconstruction
Previously, we have learned about the spectral domain in the context of sampling
theory, filters, and the Fourier transform, in particular the fast Fourier transform,
which we used to compute the spectral centroid. In this chapter, we focus on
the details of converting from a time domain representation to a frequency do-
main representation, operating on the frequency domain representation, and then
reconstructing the time domain signal.

We emphasized earlier that filters are not typically implemented in the fre-
quency domain, in spite of our theoretical understanding that filtering is effec-
tively multiplication in the frequency domain. This is because we cannot compute
a Fourier transform on a infinite signal or even a very long one. Therefore, our
only option is to use short time transforms as we did with computing the spectral
centroid. That could be used for filtering, but there are problems associated with
using overlapping short-time transforms. Generally, we do not use the FFT for
filtering.

Nevertheless, operations on spectral representations are interesting for analy-
sis and synthesis. In the following sections, we will review the Fourier transform,
consider the problems of long-time analysis/synthesis using short-time transforms,
and look at spectral processing in Nyquist.

8.1.1 Review of FFT Analysis
Here again are the equations for the Fourier Transform in the continuous and dis-
crete forms:

Continuous Fourier Transform
Real part:

R(ω) =
∫

∞

−∞

f (t)cos(ωt)dt (8.1)

Imaginary part:

X(ω) =−
∫

∞

−∞

f (t)sin(ωt)dt (8.2)

1

This pdf for ICM students only - ebook
and paperback available from amazon.com

Discrete Fourier Transform
Real part:

Rk =
N−1

∑
x=0

xi cos(2πki/N) (8.3)

Imaginary part:

Xk =−
N−1

∑
x=0

xi sin(2πki/N) (8.4)

Recall from the discussion of the spectral centroid that when we take FFTs in
Nyquist, the spectra appear as floating point arrays. As shown in Figure 8.1, the
first element of the array (index 0) is the DC (0 Hz) component,1 and then we have
alternating cosine and sine terms all the way up to the top element of the array,
which is the cosine term of the Nyquist frequency. To visualize this in a different
way, in Figure 8.2, we represent the basis functions (cosine and sine functions that
are multiplied by the signal), and the numbers here are the indices in the array. The
second element of the array (the gray curve labeled 1), is a single period of cosine
across the duration of the analysis frame. The next element in the array (the black
curve labeled 2) is a single sine function over the length of the array. Proceeding
from there, we have two cycles of cosine, two cycles of sine. Finally, the Nyquist
frequency term has n/2 cycles of a cosine, forming alternating samples of +1, -1,
+1, -1, +1, (The sine terms at frequency 0 and the Nyquist frequency N/2 are
omitted because sin(2πki/N) = 0 if k = 0 or k = N/2.)

Figure 8.1: The spectrum as a floating point array in Nyquist. Note that the real
and imaginary parts are interleaved, with a real/imaginary pair for each frequency
bin. The first and last bin have only one number (the real part) because the imagi-
nary part for these bins is zero.

Following the definition of the Fourier transform, these basis functions are
multiplied by the input signal, the products are summed, and the sums are the
output of the transform, the so-called Fourier coefficients. Each one of the basis
functions can be viewed as a frequency analyzer—it picks out a particular fre-
quency from the input signal. The frequencies selected by the basis functions are
K/duration, where index K ∈ {0,1, ...,n/2}.

Knowing the frequencies of basis functions is very important for interpreting
or operating on spectra. For example, if the analysis window size is 512 samples,
the sample rate is 44100 Hz, and value at index 5 of the spectrum is large, what

1This component comes from the particular case where ω = 0, so cosωt = 1, and the integral is
effectively computing the average value of the signal. In the electrical world where we can describe
electrical power as AC (alternating current, voltage oscillates up an down, e.g. at 60 Hz) or DC (direct
current, voltage is constant, e.g. from a 12-volt car battery), the average value of the signal is the DC
component or DC offset, and the rest is “AC.”

2

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 8.2: The so-called basis functions for the Fourier transform labeled with
bin numbers. To compute each Fourier coefficient, form the dot product of the
basis function and the signal. You can think of this as the weighted average of the
signal where the basis function provides the weights. Note that all basis functions,
and thus the frequencies they select from the input signal, are harmonics: multi-
ples of a fundamental frequency that has a period equal to the size of the FFT.
Thus, if the N input points represent 1/10 second of sound, the bins will represent
10 Hz, 20 Hz, 30 HZ, ..., etc. Note that we show sin functions, but the final imag-
inary (sin) coefficient of the FFT is negated (see Equation 8.4.)

strong frequency does that indicate? The duration is 512/44100 = 0.01161 s, and
from Figure 8.2, we can see there are 3 periods within the analysis window, so
K = 3, and the frequency is 3/0.01161 = 258.398 Hz. A large value at array
index 5 indicates a strong component near 258.398 Hz.

Now, you may ask, what about some near-by frequency, say, 300 Hz? The next
analysis frequency would be 344.531 Hz at K = 4, so what happens to frequencies
between 258.398 and 344.531 Hz? It turns out that each basis function is not a
perfect “frequency selector” because of the finite number of samples considered.
Thus, intermediate frequencies (such as 300 Hz) will have some correlation with
more than one basis function, and the discrete spectrum will have more than one
non-zero term. The highest magnitude coefficients will be the ones whose basis
function frequencies are nearest that of the sinusoid(s) being analyzed.

8.1.2 Perfect Reconstruction
Is it possible to go from the time domain to the spectral domain and back to the
time domain again without any loss or distortion? One property that works in our
favor is that the FFT is information-preserving. There is a Fast Inverse Short-Time
Discrete Fourier Transform, or IFFT for short, that converts Fourier coefficients
back into the original signal. Thus, one way to convert to the spectral domain and
back, without loss, is shown in Figure 8.3.

In general, each short-time spectrum is called a spectral frame or an analysis
frame.

The problem with Figure 8.3 is that if we change any coefficients in the spec-
trum, it is likely that the reconstructed signal will have discontinuities at the
boundaries between one analysis frame and the next. You may recall from our
early discussion on splicing that cross-fades are important to avoid clicks due to
discontinuities. In fact, if there are periodic discontinuities (every analysis frame),

3

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 8.3: One (flawed) approach to lossless conversion to the frequency domain
and back to the time domain. This works fine unless you do any manipulation in
the frequency domain, in which case discontinuities will create horrible artifacts.

a distinct buzz will likely be heard.
Just as we used envelopes and cross-fades to eliminate clicks in other situa-

tions, we can use envelopes to smooth each analysis frame before taking the FFT,
and we can apply the smoothing envelope again after the IFFT to ensure there are
no discontinuities in the signal. These analysis frames are usually called windows
and the envelope is called a windowing function.

Figure 8.4 illustrates how overlapping windows are used to obtain groups of
samples for analysis. From the figure, you would (correctly) expect that ideal win-
dow functions would be smooth and sum to 1. One period of the cosine function
raised by 1 (so the range is from 0 to 2) is a good example of such a function.
Raised cosine windows (also called Hann or Hanning windows, see Figure 8.5)
sum to one if they overlap by 50%.

The technique of adding smoothed overlapped intervals of sound is related to
granular synthesis. When the goal is to produce a continuous sound (as opposed
to a turbulent granular texture), this approach is called overlap-add.

Figure 8.4: Multiple overlapping Windows. The distance between windows is the
step size.

But windows are applied twice: Once before FFT analysis because smoothing
the signal eliminates some undesirable artifacts from the computed spectrum, and
once after the IFFT to eliminate discontinuities. If we window twice, do the
envelopes still sum to one? Well, no, but if we change the overlap to 75% (i.e.
each window steps by 1/4 window length), then the sum of the windows is one!2

2The proof is straightforward using trigonometric identities, in particular sin2(t)+ cos2(t) = 1. If
you struggled to learn trig identities for high-school math class but never had any use for them, this
proof will give you a great feeling of fulfillment.

4

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 8.5: The raised cosine, Hann, or Hanning window, is named after the Math-
ematician Von Hann. This figure, from katja (www.katjaas.nl), shows multiple
Hann windows with 50% overlap, which sum to 1. But that’s not enough! In prac-
tice, we multiply by a smoothing window twice: once before the FFT and once
after the IFFT. See the text on how to resolve this problem.

With windowing, we can now alter spectra more-or-less arbitrarily, then re-
construct the time domain signal, and the result will be smooth and pretty well
behaved.

For example, a simple noise reduction technique begins by converting a sig-
nal to the frequency domain. Since noise has a broad spectrum, we expect the
contribution of noise to the FFT to be a small magnitude at every frequency. Any
magnitude that is below some threshold is likely to be “pure noise,” so we set it to
zero. Any magnitude above threshold is likely to be, at least in part, a signal we
want to keep, and we can hope the signal is strong enough to mask any noise near
the same frequency. We then simply convert these altered spectra back into the
time domain. Most of the noise will be removed and most of the desired signal
will be retained.

8.2 Spectral Processing
In this section, we describe how to use Nyquist to process spectra.

8.2.1 From Sound to Spectra
Nyquist has a built-in type for sound together with complex and rich interfaces,
however, there is nothing like that in Nyquist for spectra, which are represented
simply as arrays of floats representing spectral frames. Thus, we have to design
an architecture for processing spectra in Nyquist (Figure 8.6). In this figure, data
flows right-to-left. We first take input sounds, extract overlapping windows, and
apply the FFT to these windows to get spectral frames. We then turn those spectral
frames back into time domain frames and samples, and overlap add them to pro-
duce an output sound. The data chain goes from time domain to spectral domain
and back to time domain.

In terms of control flow, everything is done in a lazy or demand-driven manner,
which means we start with the output on the left. When we need some sound
samples, we generate a request to the object providing samples. It generates a
request for a spectral frame, which it needs to do an IFFT. The request goes to the
FFT iterator, which pulls samples from the source sound, performs the FFT, and
returns the spectrum to SND-IFFT.

Given this simple architecture, we can insert a spectral processing object be-
tween SND-IFFT and FFT iterator to alter the spectra before converting them back
to the time domain. We could even chain multiple spectral processors in sequence.

5

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 8.6: Spectral processing in Nyquist. Dependencies of sounds, unit gener-
ators, and objects are indicated by arrows. Computation is demand driven, and
demand flows left-to-right following pointers to signal sources. Signal data flows
right-to-left from signal sources to output signals after processing.

Nyquist represents the FFT iterator in Figure 8.6 as an object, but SAL does not
support object-oriented programming, so Nyquist provides a procedural interface
for SAL programmers.

The following is a simple template for spectral processing in SAL. You can
find more extensive commented code in the “fftsal” extension of Nyquist (use the
menu in the NyquistIDE to open the extension manager to find and install it). In
particular, see comments in the files lib/fftsal/spectral-process.lsp and
in runtime/spectral-analysis.lsp.

To get started, we use the sa-init function to return an object that will gen-
erate a sequence of FFT frames by analyzing an input audio file:

set sa = sa-init(input: "./rpd-cello.wav",
fft-dur: 4096 / 44100.0,
skip-period: 512 / 44100.0,
window: :hann)

Next, we create a spectral processing object that pulls frames as needed from sa,
applies the function processing-fn to each spectrum, and returns the resulting
spectrum. The two zeros passed to sp-init are additional state we have added
here just for example. The processing-fn must take at least two parameters:
the spectral analysis object sa, and the spectrum (array of floats) to be modified.
You can have additional parameters for state that is preserved from one frame to
the next. In this case, processing-fn will have p1 and p2, corresponding in
number to the two zeros passed to sp-init.

set sp = sp-init(sa, quote(processing-fn), 0, 0)

Since SAL does not have objects, but one might want object-like behaviors, the
spectral processing system is carefully implemented with “stateful” object-oriented
processing in mind. The idea is that we pass state variables into the processing
function and the function returns the final values of the state variables so that
they can be passed back to the function on its next invocation. The definition of
processing-fn looks like this:

function processing-fn(sa, frame, p1, p2)
begin

... Process frame here ...
set frame[0] = 0.0 ; simple example: remove DC

6

This pdf for ICM students only - ebook
and paperback available from amazon.com

return list(frame, p1 + 1, p2 + length(frame))
end

In this case, note that processing-fn works with state represented by p1 and
p2. This state is passed into the function each time it is called. The function
returns a list consisting of the altered spectral frame and the state values, which
are saved and passed back on the next call. Here, we update p1 to maintain a
count of frames, and p2 to maintain a count of samples processed so far. These
values are not used here. A more realistic example using state variables is you
might want to compute the spectral difference between each frame and the next.
In that case, you could initialize p1 to an array of zeros and in processing-fn,
copy the elements of frame to p1. Then, processing-fn will be called with the
current frame in frame as well as the previous frame in p1.

Getting back to our example, to run the spectral processing, you write the
following:

play sp-to-sound(sp)

The sp-to-sound function takes a spectral processing object created by
sp-init, calls it to produce a sequence of frames, converts the frames back to
the time domain, applies a windowing function, and performs an overlap add,
resulting in a sound.

7

This pdf for ICM students only - ebook
and paperback available from amazon.com

	Spectral Processing
	FFT Analysis and Reconstruction
	Review of FFT Analysis
	Perfect Reconstruction

	Spectral Processing
	From Sound to Spectra

