
Introduction to
Computer Music

Week 6

Instructor: Prof. Roger B. Dannenberg

Topics Discussed: Recursion, Duration Matching, Control
Functions, and Granular Synthesis

This pdf for ICM students only - ebook
and paperback available from amazon.com



Chapter 6

Nyquist Techniques and
Granular Synthesis

Topics Discussed: Recursion, Duration Matching, Control Functions, and
Granular Synthesis

6.1 Programming Techniques in Nyquist
One of the unusual things about Nyquist is the support for timing (temporal se-
mantics), which is lacking in most programming languages. Nyquist also has
signals as a fundamental data type. Here we introduce a number of different pro-
gramming techniques related to timing and signals that are useful in Nyquist.

6.1.1 Recursive Sound Sequences
We first look at the idea of recursive sound sequences. The seq function delays
evaluation of each behavior until the previous behavior is finished. There are other
functions, including timed-seq that work in a similar way. This delayed evalu-
ation, a form of lazy evaluation, is important in practice because if sound com-
putation can be postponed until needed, Nyquist can avoid storing large signals
in memory. Lazy evaluation has another benefit, in that it allows you to express
infinite sounds recursively. Consider a drum roll as an example. We define a drum
roll recursively as follows: Start with one drum stroke and follow it with a drum
roll!

The drum-roll() function below is a direct implementation of this idea.
drum-roll() builds up a drum roll one stroke at a time, recursively, and re-
turns an infinite drum roll sound sequence. Even Google doesn’t have that much
disk space, so to avoid the obvious problem of storing an infinite sound, we can
multiply drum-roll() by an envelope. In limited-drum-roll(), we make a
finite drum roll by multiplying drum-roll() by const(1, 2). const(1, 2)
is a unit generator that returns a constant value of 1 until the duration of 2, then it
drops to 0. Here, multiplying a limited sound by an infinite sound gives us a finite
computation and result. Note that the multiplication operator in Nyquist is quite
smart. It knows that when multiplying by 0, the result is always 0; and when a
sound reaches its stop time, it remains 0 forever, thus Nyquist can terminate the
recursion at the sound stop time.

define function drum-stroke()
return noise() * pwev(1, 0.05, 0.1)

1

This pdf for ICM students only - ebook
and paperback available from amazon.com



define function drum-roll()
return seq(drum-stroke(), drum-roll()) ; recursion!

define function limited-drum-roll()
return const(1, 2) * drum-roll() ; duration=2

play limited-drum-roll()

Note that in this example, there is a risk that the “envelope” const(1, 2) might
cut off a drum-stroke suddenly.1 Here, drum-strokes happen to be 0.1 seconds
long, which means a 2-second drum-roll has exactly 20 full drum-strokes, so a
drum-stroke and and the envelope will end exactly together. In general, either
seqrep or an envelope that gives a smooth fadeout would be a better design.

6.1.2 Matching Durations
In Nyquist, sounds are considered to be functions of time, with no upper bound
on time. Sounds do have a “stop time” after which the signal is considered to
remain at zero forever. This means that you can easily combine sounds of different
durations by mistake. For example, you can multiply a 1-second oscillator signal
by a 2-second envelope, resulting in a 1-second signal that probably ends abruptly
before the envelope goes to zero.

It is a “feature” of Nyquist that you can compose longer sounds from shorter
sounds or multiply by short envelopes to isolate sections of longer sounds, but
this leads to one of the most common errors in Nyquist: Combining sounds and
controls with different durations by mistake.

Here is an example of this common error:

play pwl(0.5, 1, 10, 1, 13) * ; 13-seconds duration
osc(c4) ; nominally 1-second duration

; final result: sound stops at 1 second(!)

Remember that Nyquist sounds are immutable. Nyquist will not and cannot go
back and recompute behaviors to get the “right” durations–how would it know?
There are two basic approaches to make durations match. The first is to make
everything have a nominal length of 1 and use the stretch operator to change du-
rations:

(pwl(0.1, 1, 0.8, 1, 1) * osc(c4)) ~ 13

Here we have changed pwl to have a duration of 1 rather than 13. This is the
default duration of osc, so they match. Note also the use of parentheses to ensure
that the stretch factor applies to both pwl and osc.

The second method is to provide duration parameters everywhere:
pwl(0.5, 1, 10, 1, 13) * osc(c4, 13)

Here, we kept the original 13-second long pwl function, but we explicitly set the
duration of osc to 13. If you provide duration parameters everywhere, you will
often end up passing duration as a parameter, but that’s not always a bad thing as
it makes duration management more explicit.

6.1.3 Control Functions
Another useful technique in Nyquist is to carefully construct control functions.
Synthesizing control is like synthesizing sound, and often control is even more
important than waveforms and spectra in producing a musical result.

1Recall that const(1, 2) is a control signal with the constant value 1 for 2 seconds. It cuts off
instantly at 2 seconds.

2

This pdf for ICM students only - ebook
and paperback available from amazon.com



Smooth Transitions

Apply envelopes to almost everything. Even control functions can have control
functions! A good example is vibrato. A “standard” vibrato function might look
like lfo(6) * 5, but this would generate constant vibrato throughout a tone.
Instead, consider lfo(6) * 5 * pwl(0.3, 0, 0.5, 1, 0.9, 1, 1) where
the vibrato depth is controlled by an envelope. Initially, there is no vibrato, the
vibrato starts to emerge at 0.3 and reaches the full depth at 0.5, and finally ta-
pers rapidly from 0.9 to 1. Of course this might be stretched, so these numbers are
relative to the whole duration. Thus, we not only use envelopes to get smooth tran-
sitions in amplitude at the beginnings and endings of notes, we can use envelopes
to get smooth transitions in vibrato depth and other controls.

Composing Control Functions

The are a few main “workhorse” functions for control signals.

1. for periodic variation such as vibrato, the lfo function generates low-frequency
sinusoidal oscillations. The default sample rate of lfo is 1/20 of the audio
sample rate, so do not use this function for audio frequencies. If the fre-
quency is not constant, the simplest alternative is hzosc, which allows its
first argument to be a SOUND as well as a number.

2. for non-periodic but deterministic controls such as envelopes, pwl and the
related family (including pwlv and pwlev) or the envelope function env are
good choices.

3. for randomness, a good choice is noise. By itself, noise generates audio
rate noise, which is not suitable for adding small random fluctuations to
control signals. What we often use in this case is a random signal that
ramps smoothly from one amplitude to the next, with a new amplitude every
100 ms or so. You can obtain this effect by making a very low sample
rate noise signal. When this signal is added to or multiplied by a higher
sample rate signal, the noise signal is linearly interpolated to match the
rate of the other signal, thus achieving a smooth ramp between samples.
The expression for this is sound-srate-abs(10, noise()), which uses
the sound-srate-abs transform to change the environment for noise to
a sample rate of 10 Hz. See Figure 6.1.

Global vs. Local Control Functions

Nyquist allows you to use control functions including envelopes at different levels
of hierarchy. For example, you could synthesize a sequence of notes with indi-
vidual amplitude envelopes, then multiply the whole sequence by an overarching
envelope to give a sense of phrase. Figure 6.2 illustrates how global and “local”
envelopes might be combined.

In the simple case of envelopes, you can just apply the global envelope through
multiplication after notes are synthesized. In some other cases, you might need to
actually pass the global function as a parameter to be used for synthesis. Suppose
that in Figure 6.2, the uppermost (global) envelope is supposed to control the index
of modulation in FM synthesis. This effect cannot be applied after synthesis, so
you must pass the global envelope as a parameter to each note. Within each note,
you might expect the whole global envelope to somehow be shifted and stretched
according to the note’s start time and duration, but that does not happen. Instead,

3

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 6.1: Plots of: noise, sound-srate-abs(10, noise()), ramp() and
sound-srate-abs(10, noise()) * 0.1 + ramp(). The bottom plot shows
how the noise function can be used to add jitter or randomness to an otherwise
mathematically smooth control function. Such jitter or randomness occurs natu-
rally, often due to minute natural human muscle tremors.

Figure 6.2: Hierarchical organization of envelopes.

since the control function has already been computed as a SOUND, it is immutable
and fixed in time. Thus, the note only “sees” the portion of the control function
over the duration of the note, as indicated by the dotted lines in Figure 6.2.

In some cases, e.g. FM synthesis, the control function determines the note start
time and duration, so fmosc might try to create a tone over the entire duration of
the global envelope, depending on how you use it. One way to “slice” out a piece
of a global envelope or control function according to the current environment is to
use const(1) which forms a rectangular pulse that is 1 from the start time to the
nominal duration according to the environment. If you multiply a global envelope
parameter by const(1), you are sure to get something that is confined within the
nominal starting and ending times in the environment.

6.1.4 Stretchable Behaviors
An important feature of Nyquist is the fact that functions represent classes of
behaviors that can produce signals at different start times, with different durations,
and be affected by many other parameters, both explicit and implicit.

Nyquist has default stretch behaviors for all of its primitives, and we have seen
this many times. Often, the default behavior does the “right thing,” (see the dis-
cussion above about matching durations). But sometimes you need to customize
what it means to “stretch” a sound. For example, if you stretch a melody, you
make notes longer, but if you stretch a drum roll, you do not make drum strokes
slower. Instead, you add more drum strokes to fill the time. With Nyquist, you
can create your own abstract behaviors to model things like drum rolls, constant-
rate trills, and envelopes with constant attack times, none of which follow simple
default rules of stretching.

Here is an example where you want the number of things to increase with
duration:

define function n-things()

4

This pdf for ICM students only - ebook
and paperback available from amazon.com



begin
with dur = get-duration(1),

n = round(dur / *thing-duration*)
return seqrep(i, n, thing() ~~ 1)

end

The basic idea here is to first “capture” the nominal duration using

get-duration(1)

Then, we compute n in terms of duration. Now, if we simply made n things
in the current stretch environment (stretch by dur), we would create a sound
with duration roughly n × *thing-duration* × dur, but we want to compute
thing() without stretching. The ~~ operator, also called absolute stretch, resets
the environment stretch factor to 1 when we call thing(), so now the total du-
ration will be approximately n × *thing-duration*, which is about equal to
get-duration(1) as desired.

Here is an example where you want an envelope to have a fixed rise time.

define function my-envelope()
begin

with dur = get-duration(1)
return pwl(*rise-time*, 1, dur - *fall-time*,

1, dur) ~~ 1
end

As in the previous example, we “capture” duration to the variable dur and then
compute within an absolute stretch (~~) of 1 so that all duration control is explicit
and in terms of dur. We set the rise time to a constant, *rise-time* and com-
pute the beginning and ending of the “release” relative to dur which will be the
absolute duration of the envelope.

6.1.5 Summary
We have seen a number of useful Nyquist programming techniques. To make
sure durations match, either normalize durations to 1 and stretch everything as a
group using the stretch operator (~), or avoid stretching altogether and use explicit
duration parameters everywhere. In general, use envelopes everywhere to achieve
smooth transitions, and never let an oscillator output start or stop without a smooth
envelope. Control is all important, so in spite of many simplified examples you
will encounter, every parameter should be a candidate for control over time: am-
plitude, modulation, vibrato, filter cutoff, and even control functions themselves
can be modulated or varied at multiple time scales. And speaking of multiple time
scales, do not forget that musical gestures consisting of multiple notes or sound
events can be sculpted using over-arching envelopes or smooth control changes
that span whole phrases.

6.2 Granular Synthesis
We know from our discussion of the Fourier transform that that complex sounds
can be created by adding together a number of sine waves. Granular synthesis
uses a similar idea, except that instead of a set of sine waves whose frequencies
and amplitudes change over time, we use many thousands of very short (usually
less than 100 milliseconds) overlapping sound bursts or grains. The waveforms
of these grains are often sinusoidal, although any waveform can be used. (One

5

This pdf for ICM students only - ebook
and paperback available from amazon.com



alternative to sinusoidal waveforms is to use grains of sampled sounds, either
pre-recorded or captured live.) By manipulating the temporal placement of large
numbers of grains and their frequencies, amplitude envelopes, and waveshapes,
very complex and time-variant sounds can be created.

6.2.1 Grains
To make a grain, we simply take any sound (e.g. a sinusoid or sound from a sound
file) and apply a short smoothing envelope to avoid clicks. (See Figure 6.3.) The
duration is typically from around 20ms to 200ms: long enough to convey a little
content and some spectral information, but short enough to avoid containing an
entire note or word (from speech sounds) or anything too recognizable.

Figure 6.3: Applying a short envelope to a sound to make a grain for granular
synthesis. How would a different amplitude envelope, say a square one, affect
the shape of the grain? What would it do to the sound of the grain? What would
happen if the sound was a recording of a natural sound instead of a sinusoid? What
would be the effect of a longer or shorter envelope?

6.2.2 Clouds of Sound
Granular synthesis is often used to create what can be thought of as “sound clouds”—shifting
regions of sound energy that seem to move around a sonic space. A number of
composers, like Iannis Xenakis and Barry Truax, thought of granular synthesis as
a way of shaping large masses of sound by using granulation techniques. These
two composers are both considered pioneers of this technique (Truax wrote some
of the first special-purpose software for granular synthesis). Sometimes, cloud ter-
minology is even used to talk about ways of arranging grains into different sorts
of configurations.

6.2.3 Grain Selection, Control and Organization
In granular synthesis, we make and combine thousands of grains (sometimes thou-
sands of grains per second), which is too much to do by hand, so we use compu-
tation to do the work, and we use high-level parameters to control things. Beyond
this, granular synthesis is not a specific procedure and there is no right or wrong
way to do it. It is good to be aware of the range of mechanisms by which grains
are selected, processed, and organized.

6

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 6.4: Visualization of a granular synthesis “score.” Each dot represents
a grain at a particular frequency and moment in time. An image such as this
one can give us a good idea of how this score might sound, even though there
is some important information left out (such as the grain amplitudes, waveforms,
amplitude envelopes, and so on). What sorts of sounds does this image imply?
If you had three vocal performers, one for each cloud, how would you go about
performing this piece? Try it!

One important control parameter is density. Typically granular synthesis is
quite dense, with 10 or more grains overlapping at any given time. But grains can
also be sparse, creating regular rhythms or isolated random sound events.

Stochastic or statistical control is common in granular synthesis. For example,
we could pick grains from random locations in a file and play them at random
times. An interesting technique is to scan through a source file, but rather than
taking grains sequentially, we add a random offset to the source location, taking
grains in the neighborhood of a location that progresses through the file. This
produces changes over time that mirror what is in the file, but at any given time,
the cloud of sound can be quite chaotic, disguising any specific audio content or
sound events in the file.

It is also possible to resample the grain to produce pitch shifts. If pitch shifting
is random, a single tone in the source can become a multi-pitch cluster or cloud in
the output. If you resample grains, you can shift the pitch by octaves or harmonics,
which might tend to harmonize the output sound when there is a single pitch on
the input, or you can resample by random ratios, creating an atonal or microtonal
effect. When you synthesize grains, you can use regular spacing, e.g. play a
grain every 10 ms, which will tend to create a continuous sounding texture, or you
can play grains with randomized inter-onset intervals, creating a more chaotic or
bubbly sound.

Some interesting things to do with granular synthesis include vocal mumblings
using grains to chop up speech and make speech-sounding nonsense, especially
using grains with approximately the duration of phonemes so that whole words are
obliterated. Granular synthesis can also be used for time stretching: By moving
through a file very slowly, fetching overlapping grains and outputting them with
less overlap, the file is apparently stretched, a shown in Figure 6.5. There will be
artifacts because grains will not add up perfectly smoothly to form a continuous
sound, but this can be a feature as well as a limitation, depending on your musical
goals.

7

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 6.5: Stretching with granular synthesis.

6.2.4 Granular Synthesis in Nyquist
Nyquist does not have a “granular synthesis” function because there are so many
ways to implement and control granular synthesis. However, Nyquist is almost
unique in its ability to express granular synthesis using a combination of signal
processing and control constructs.

Generating a Grain

Figure 6.6 illustrates Nyquist code to create an smooth envelope and read a grain’s
worth of audio from a file to construct a smooth grain. Note the use of duration d
both to stretch the envelope and control how many samples are read from the file.
Below, we consider two approaches to granular synthesis implementation. The
first uses scores and the second uses seqrep.

Figure 6.6: Contructing a grain in Nyquist.

6.2.5 Grains in Scores
A score for granular synthesis treats each grain as a sound event:

{{0 0.05 {grain offset: 2.1}}
{0.02 0.06 {grain offset: 3.0}}
...}

The score calls upon grain, which we define below. Notice that grain dura-
tions are specified in the score and implemented through the environment, so the
cos-pulse signal will be stretched by the duration, but s-read is unaffected by
stretching. Therefore, we must obtain the stretch factor using get-duration(1)
and pass that value to s-read as the optional dur: keyword parameter:

8

This pdf for ICM students only - ebook
and paperback available from amazon.com



function grain(offset: 0)
begin with dur = get-duration(1)

return s-read("filename.wav",
time-offset: offset, dur: dur) *

cos-pulse()
end

Now, we can make make a score with score-gen. In the following expression,
we construct 2000 grains with randomized inter-onset intervals and using pattern
objects to compute the grain durations and file offsets:

score-gen(score-len: 2000,
ioi: 0.05 + rrandom() * 0.01,
dur: next(dur-pat),
offset: next(offset-pat))

You could also use more randomness to compute parameters, e.g. the duration
could come from a Gaussian distribution (see the Nyquist function gaussian-dist),
and offset: could be computed by slowly moving through the file and adding a
random jitter, e.g.

max(0, sg-count * 0.01 + rrandom() * 0.2)

6.2.6 Grains with Seqrep
Rather than computing large scores, we can use Nyquist control constructs to
creates grains “on the fly.” In the following example, seqrep is used to create and
sum 2000 sounds. Each sound is produced by a call to grain, which is stretched
by values from dur-pat. To obtain grain overlap, we use set-logical-stop
with an IOI (logical stop time) parameter of 0.05 + rrandom() * 0.01, so the
grain IOI will be 50 ms ± 10 ms:

seqrep(i, 2000,
set-logical-stop(

grain(offset: next(offset-pat)) ~
next(dur-pat),

0.05 + rrandom() * 0.01))

For another example, you can install the gran extension using Nyquist’s Ex-
tension Manager. The package includes a function sf-granulate that imple-
ments granular synthesis using a sound file as input.

6.2.7 Other Ideas
You might want to implement something like the tendency masks we described
earlier or use a pwl function to describe how some granular synthesis parameters
evolve over time. Since pwl produces a signal and you often need numbers to
control each grain, you can use sref to evaluate the signal at a specific time, e.g.
s-ref(sound, time) will evaluate sound at time.

Another interesting idea is to base granular synthesis parameters on the source
sound itself. A particularly effective technique is to select grains by slowly ad-
vancing through a file, causing a time-expansion of the file content. The most
interesting portions of the file are usually note onsets and places where things are
changing rapidly, which you might be able to detect by measuring either amplitude
or spectral centroid. Thus, if the rate at which you advanced through the file can
be inversely proportional to amplitude or spectral centroid, then the “interesting”
material will be time-expanded, and you will pass over the “boring” steady-state
portions of the signal quickly.

9

This pdf for ICM students only - ebook
and paperback available from amazon.com



6.2.8 Summary
Granular synthesis creates sound by summing thousands of sound particles or
grains with short durations to form clouds of sounds. Granular synthesis can con-
struct a wide range of textures, and rich timbres can be created by taking grains
from recordings of natural sounds. Granular synthesis offers many choices of de-
tails including grain duration, density, random or deterministic timing, pitch shifts
and source.

10

This pdf for ICM students only - ebook
and paperback available from amazon.com


	Nyquist Techniques and Granular Synthesis
	Programming Techniques in Nyquist
	Recursive Sound Sequences
	Matching Durations
	Control Functions
	Stretchable Behaviors
	Summary

	Granular Synthesis
	Grains
	Clouds of Sound
	Grain Selection, Control and Organization
	Granular Synthesis in Nyquist
	Grains in Scores
	Grains with Seqrep
	Other Ideas
	Summary



