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Chapter 4

Frequency Modulation and
Behaviors

Topics Discussed: Frequency Modulation, Behaviors and Transformations in
Nyquist

Frequency modulation (FM) is a versatile and efficient synthesis technique
that is widely implemented in software and hardware. By understanding how FM
works, you will be able to design parameter settings and control strategies for your
own FM instrument designs.

4.1 Introduction to Frequency Modulation
Frequency modulation occurs naturally. It is rare to hear a completely stable
steady pitch. Some percussion instruments are counter-examples, e.g. a piano
tone or a tuning fork or a bell, but most instruments and the human voice tend to
have at least some natural frequency change.

4.1.1 Examples
Common forms of frequency variation in music include:

• Voice inflection, natural jitter, and vibrato in singing.

• Vibrato in instruments. Vibrato is a small and quasi-periodic variation of
pitch (accompanied by amplitude and spectral variations), often around 6
Hz and spanning a fraction of a semitone.

• Instrumental effects, e.g. electric guitars sometimes have “whammy bars”
that stretch or relax all the strings to change their pitch. Guitarists can
“bend” strings by pushing the string sideways across the fretboard.

• Many tones begin low and come up to pitch.

• Loose vibrating strings go sharp (higher pitch) as they get louder. Loose
plucked strings get flatter (lower pitch) especially during the initial decay.

• The slide trombone, Theremin, voice, violin, etc. create melodies by chang-
ing pitch, so melodies on these instruments can be thought of as examples
of frequency modulation (as opposed to, say, pianos, where melodies are
created by selecting from fixed pitches).
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4.1.2 FM Synthesis
Normally, vibrato is a slow variation created by musicians’ muscles. With elec-
tronics, we can increase the vibrato rate into the audio range, where interesting
things happen to the spectrum. The effect is so dramatic, we no longer refer to it
as vibrato but instead call it FM Synthesis.

Frequency modulation (FM) is a synthesis technique based on the simple idea
of periodic modulation of the signal frequency. That is, the frequency of a carrier
sinusoid is modulated by a modulator sinusoid. The peak frequency deviation,
also known as depth of modulation, expresses the strength of the modulator’s ef-
fect on the carrier oscillator’s frequency.

FM synthesis was invented by John Chowning [?] and became very popular
due to its ease of implementation and computationally low cost, as well as its
(somewhat surprisingly) powerful ability to create realistic and interesting sounds.

4.2 Theory of FM
Let’s look at the equation for a simple frequency controlled sine oscillator. Often,
this is written

y(t) = Asin(2πφ t) (4.1)

where φ (phi) is the frequency in Hz. Note that if φ is in in Hz (cycles per sec-
ond), the frequency in radians per second is 2πφ . At time t, the phase will have
advanced from 0 to 2πφ t, which is the integral of 2πφ over a time span of t. We
can express what we are doing in detail as:

y(t) = Asin(2π

∫ t

0
φdx) (4.2)

To deal with a time-varying frequency modulation, we will substitute frequency
function f (·) for φ :

y(t) = Asin(2π

∫ t

0
f (x)dx) (4.3)

Frequency modulation uses a rapidly changing function

f (t) =C+Dsin(2πMt) (4.4)

where C is the carrier, a frequency offset that is in many cases is the fundamental
or “pitch”. D is the depth of modulation that controls the amount of frequency de-
viation (called modulation), and M is the frequency of modulation in Hz. Plugging
this into Equation 4.3 and simplifying gives the equation for FM:

y(t) = Asin(2π

∫ t

0
C+Dsin(2πMx)dx) (4.5)

Note that the integral of sin is cos, but the only difference between the two is
phase. By convention, we ignore this detail and simplify Equation 4.5 to get this
equation for an FM oscillator:

f (t) = Asin(2πCt + I sin(2πMt)) (4.6)

I = D/M is known as the index of modulation. When D ̸= 0, sidebands appear
in the spectra of the signal above and below the carrier frequency C, at multiples
of ±M. In other words, we can write the set of frequency components as C± kM,
where k=0,1,2,.... The number of significant components increases with I, the
index of modulation.
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4.2.1 Negative Frequencies
According to these formulas, some frequencies will be negative. This can be inter-
preted as merely a phase change: sin(−x) =−sin(x) or perhaps not even a phase
change: cos(−x) = cos(x). Since we tend to ignore phase, we can just ignore
the sign of the frequency and consider negative frequencies to be positive. We
sometimes say the negative frequencies “wrap around” (zero) to become positive.
The main caveat here is that when frequencies wrap around and add to positive
frequencies of the same magnitude, the components may not add in phase. The
effect is to give FM signals a complex evolution as the index of modulation in-
creases and adds more and more components, both positive and negative.

4.2.2 Harmonic Ratio
The human ear is very sensitive to harmonic vs. inharmonic spectra. Perceptually,
harmonic spectra are very distinctive because they give a strong sense of pitch.
The harmonic ratio [?] is the ratio of the modulating frequency to the carrier fre-
quency, such that H = M/C. If H is a rational number, the spectrum is harmonic;
if it is irrational, the spectrum is inharmonic.

4.2.3 Rational Harmonic Ratio
If H = 1 the spectrum is harmonic and the carrier frequency is also the funda-
mental, i.e. F0 =C. To show this, remember that the frequencies will be C± kM,
where k=0,1,2,..., but if H = 1, then M =C, so the frequencies are C±kC, or sim-
ply kC. This is the definition of a harmonic series: multiples of some fundamental
frequency C.

When H = 1/m, and m is a positive integer, C instead becomes the mth com-
ponent (harmonic) because the spacing between harmonics is M =C/m, which is
also the fundamental: F0 = M =C/m.

With H = 2, we will get sidebands at C±2kC (where k=0,1,2,...), thus omitting
all even harmonics — which is a characteristic of cylindrical woodwinds such as
the clarinet.

4.2.4 Irrational Harmonic Ratio
If H is irrational, the negative frequencies that wrap around at 0 Hz tend to land
between the positive frequency components, thus making the spectrum denser. If
we make H much less than 1 (M much less than C), and if H is irrational (or at
least not a simple fraction such as 1/n), the FM-generated frequencies will cluster
around C (the spacing between components will be relatively small); yielding
sounds that have no distinct pitch and that can mimic drums and gongs.

4.2.5 FM Spectra and Bessel Functions
The sidebands infused by FM are governed by Bessel functions of the first kind
and nth order; denoted Jn(I), where I is the index of modulation. The Bessel
functions determine the magnitudes and signs of the frequency components in the
FM spectrum. These functions look a lot like damped sine waves, as can be seen
in Figure 4.1.

Here are a few insights that help explain why FM synthesis sounds the way it
does:

• J0(I) gives the amplitude of the carrier.
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Figure 4.1: Bessel functions of the first kind, orders 0 to 3. The x axis represents
the index of modulation in FM.

• J1(I) gives the amplitude of the first upper and lower sidebands.

• Generally, Jn(I) governs the amplitudes of the nth upper and lower side-
bands.

• Higher-order Bessel functions start from zero and increase more and more
gradually, so higher-order sidebands only have significant energy when I is
large.

• The spectral bandwidth increases with I. The upper and lower sidebands
represent the higher and lower frequencies, respectively. The larger the
value of I, the more significant sidebands you get.

• As I increases, the energy of the sidebands vary much like a damped sinu-
soid.

4.2.6 Index of Modulation
The index of modulation, I =D/M, allows us to relate the depth of modulation, D,
the modulation frequency, M, and the index of the Bessel functions. In practice,
this means that if we want a spectrum that has the energy of the Bessel functions
at some index I, with frequency components separated by M, then we must choose
the depth of modulation according to the relation I =D/M [?]. As a rule-of-thumb
, the number of sidebands is roughly equivalent to I +1. That is, if I = 10 we get
10+ 1 = 11 sidebands above, and 11 sidebands below the carrier frequency. In
theory, there are infinitely many sidebands at C ± kM, where k=0,1,2,... if the
modulation is non-zero, but the intensity of sidebands falls rapidly toward zero as
k increases, but this rule of thumb considers only significant sidebands. (Note that
this formula fails at I = 0: it predicts the carrier plus 1 side band above and one
below, but there are no side bands in this case.)

4.2.7 Time-Varying Parameters
For music applications, constant values of A, C, D, and M would result in a rock-
steady tone of little interest. In practice, we usually vary all of these parameter,
replacing them with A(t), C(t), D(t), and M(t). Usually, these parameters change
slowly compared to carrier and modulator frequencies, so we assume that all the
analysis here still applies and allows us to make predictions about the short-time
spectrum. FM is particularly interesting because we can make very interesting
changes to the spectrum with just a few control parameters, primarily D(t), and
M(t).
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4.2.8 Examples of FM Signals
Figures 4.2 and 4.3 show examples of FM signals. The X-axes on the plots repre-
sent time — here denoted in multiples of π .

Figure 4.2: A = 1, C = 242 Hz, D = 2, M = 40 Hz.

Figure 4.3: A = 2, C = 210 Hz, D = 10, M = 35 Hz.

4.3 Frequency Modulation with Nyquist
Now that you have a grasp of the theory, let’s use it to make some sound.

4.3.1 Basic FM
The basic FM oscillator in Nyquist is the function fmosc. The signature for fmosc
is

fmosc(basic-pitch, modulation [, table [, phase ] ] )

Let’s break that down:

• basic-pitch is the carrier frequency, expressed in steps. If there is no mod-
ulation, this controls the output frequency. Remember this is in steps,
so if you put in a number like 440 expecting Hz, you will actually get
step-to-hz(440), which is about 0.9 terahertz!1 Use A4 instead, or write
something like hz-to-step(441.0) if you want to specify frequency in
Hertz.

• modulation is the modulator. The amplitude of the modulator controls the
depth of modulation—how much does the frequency deviate from the nom-
inal carrier frequency based on basic-pitch? An amplitude of 1 (the nominal
output of (osc) for example), gives a frequency deviation of ±1. If you have

1Need we point out this is somewhat higher than the Nyquist rate?

5

This pdf for ICM students only - ebook
and paperback available from amazon.com



been paying attention, you will realize that 1 gives a very low index of mod-
ulation (1/m)—you probably will not hear anything but a sine tone. (Note
that Nyquist’s implementation is close to Equation 4.5—Nyquist performs
the integral, so the scale factor really is the depth D.) Typically,

– you will use a large number for modulation, and

– you will also scale modulation by some kind of envelope. By varying
the depth of modulation, you will vary the spectrum, which is typical
in FM synthesis.

The frequency of modulation is just the modulation frequency. It can be the
same as the carrier frequency if you want the C:M ratio to be is 1:1. This
parameter is where you control the C:M ratio.

• table is optional and allows you to replace the default sine waveform with
any waveform table. The table data structure is exactly the same one you
learned about earlier for use with the osc function.

• phase is also optional and gives the initial phase. Generally, changing the
initial phase will not cause any perceptible changes.

4.3.2 Index of Modulation Example
Produce a harmonic sound with about 10 harmonics and a fundamental of 100 Hz.
We can choose C =M = 100, which gives C : M = 1 and is at least one way to get a
harmonic spectrum. Since the number of harmonics is 10 we need the carrier plus
9 sidebands, and so I +1 = 9 or I = 8. I = D/M so D = IM, D = 8×100 = 800.
Finally, we can write

fmosc(hz-to-step(100), 800 * hzosc(100)).

4.3.3 FM Example in Nyquist
The following plays a characteristic FM sound in Nyquist:

play fmosc(c4, pwl(1, 4000, 1) * osc(c4)) ~ 10

Since the modulation comes from osc(c4), the modulation frequency matches
the carrier frequency (given by fmosc(c4, ...), so the C:M ratio is 1:1. The
amplitude of modulation ramps from 0 to 4000, giving a final index of modula-
tion of I = 4000/steptohz(C4) = 15.289. Thus, the spectrum will evolve from a
sinusoid to a rich spectrum with the carrier and around I + 1 sidebands, or about
17 harmonics. Try it!

For a musical tone, you should multiply the fmosc signal by an envelope.
Otherwise, the output amplitude will be constant. Also, you should replace the
pwl function with an envelope that increases and then decreases, at least if you
want the sound to get brighter in the middle.

4.4 Behavioral Abstraction
We now continue our introduction to fundamental concepts and structures in Nyquist.
Think about the concept of “piano note.” Piano notes can have a wide range of
pitches, loudnesses and durations, yet it still makes sense to think of “piano note”
as a concept that describes the set of all of these instances. It also makes sense to
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talk about transformations such as longer, higher or louder notes. In Nyquist, we
use behaviors to describe classes of sounds, gestures, and even sequences of sub-
behaviors (such as melodies), and we use ordinary functions (in the programming
language sense) to model behaviors.

In Nyquist, all functions are subject to transformations. You can think of trans-
formations as additional parameters to every function, and functions are free to use
these additional parameters in any way. The set of transformation parameters is
captured in what is referred to as the transformation environment. (Note that the
term environment is heavily overloaded in computer science. This is yet another
usage of the term.)

Behavioral abstraction is the ability of functions to adapt their behavior to
the transformation environment. This environment may contain certain abstract
notions, such as loudness, stretching a sound in time, etc. These notions will
mean different things to different functions. For example, an oscillator should
produce more periods of oscillation in order to stretch its output. An envelope,
on the other hand, might only change the duration of the sustain portion of the
envelope in order to stretch. Stretching recorded audio could mean resampling it
to change its duration by the appropriate amount.

Thus, transformations in Nyquist are not simply operations on signals. For
example, if I want to stretch a note, it does not make sense to compute the note
first and then stretch the signal. Doing so would cause a drop in the pitch. Instead,
a transformation modifies the transformation environment in which the note is
computed. Think of transformations as making requests to functions. It is up to the
function to carry out the request. Since the function is always in complete control,
it is possible to perform transformations with “intelligence;” that is, the function
can perform an appropriate transformation, such as maintaining the desired pitch
and stretching only the “sustain” portion of an envelope to obtain a longer note.

4.4.1 Behaviors
Nyquist sound expressions denote a whole class of behaviors. The specific sound
computed by the expression depends upon the environment. There are a number
of transformations, such as stretch and transpose that alter the environment
and hence the behavior.

The most common transformations are shift and stretch, but remember
that these do not necessarily denote simple time shifts or linear stretching: When
you play a longer note, you don’t simply stretch the signal! The behavior concept
is critical for music.

4.4.2 Evaluation Environment
To implement the behavior concept, all Nyquist expressions evaluate within an
environment.

The transformation environment is implemented in a simple manner. The en-
vironment is simply a set of special global variables. These variables should not
be read directly and should never be set directly by the programmer. Instead,
there are functions to read them, and they are automatically set and restored by
transformation operators, which will be described below. The Nyquist environ-
ment includes: starting time, stretch factor, transposition, legato factor, loudness,
sample rates, and more.
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4.4.3 Manipulating the Environment Example
A very simple example of a transformation affecting a behavior is the stretch op-
erator (~):

pluck(c4) ~ 5

This example can be read as “evaluate pluck in an environment that has been
stretched by 5 relative to the current environment.”

4.4.4 Transformations
Many transformations are relative and can be nested. Stretch does not just set the
stretch factor; instead, it multiplies the stretch factor by a factor, so the final stretch
factor in the new environment is relative to the current one.

Nyquist also has “absolute” transformations that override any existing value
in the environment. For example,

function tone2() return osc(c4) ~~ 2

returns a 2 second tone, even if you write:

play tone2() ~ 100 ; 2 second tone

because the “absolute stretch” (~~) overrides the stretch operator ~. Even though
tone2 is called with a stretch factor of 100, its absolute stretch transformation
overrides the environment and sets it to 2.

Also, note that once a sound is computed, it is immutable. The following use
of a global variable to store a sound is not recommended, but serves to illustrate
the immutability aspect of sounds:

mysnd = osc(c4) ; compute sound, duration = 1
play mysnd ~ 2 ; plays duration of 1

The stretch factor of 2 in the second line has no effect because mysnd evaluates to
an immutable sound. Transformations only apply to functions2 (which we often
call behaviors to emphasize they behave differently in different contexts) and ex-
pressions that call on functions to compute sounds. Transformations do not affect
sounds once they are computed.

An Operational View

You can think about this operationally: When Nyquist evaluates expr ~ 3, the ~
operator is not a function in the sense that expressions on the left and right are
evaluated and passed to a function where “stretching” takes place. Instead, it is
better to think of ~ as a control construct that:

• changes the environment by tripling the stretch factor

• evaluates expr in this new environment

• restores the environment

• returns the sound computed by expr

2This is a bit of a simplification. If a function merely returns a pre-computed value of type SOUND,
transformations will have no effect.
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Thus, if expr is a behavior that computes a sound, the computation will be af-
fected by the environment. If expr is a sound (or a variable that stores a sound),
the sound is already computed and evaluation merely returns the sound with no
transformation.

Transformations are described in detail in the Nyquist Reference Manual (find
“Transformations” in the index). In practice, the most critical transformations are
at (@) and stretch (~), which control when sounds are computed and how long
they are.

4.5 Sequential Behavior (seq)
Consider the simple expression:

play seq(my-note(c4, q), my-note(d4, i))

The idea is to create the first note at time 0, and to start the next note when the
first one finishes. This is all accomplished by manipulating the environment. In
particular, *warp* is modified so that what is locally time 0 for the second note is
transformed, or warped, to the logical stop time of the first note.

One way to understand this in detail is to imagine how it might be executed:
first, *warp* is set to an initial value that has no effect on time, and my-note(c4,
q) is evaluated. A sound is returned and saved. The sound has an ending time,
which in this case will be 1.0 because the duration q is 1.0. This ending time,
1.0, is used to construct a new *warp* that has the effect of shifting time by 1.0.
The second note is evaluated, and will start at time 1.0. The sound that is returned
is now added to the first sound to form a composite sound, whose duration will be
2.0. Finally, *warp* is restored to its initial value.

Notice that the semantics of seq can be expressed in terms of transformations.
To generalize, the operational rule for seq is: evaluate the first behavior according
to the current *warp*. Evaluate each successive behavior with *warp* modified
to shift the new note’s starting time to the ending time of the previous behavior.
Restore *warp* to its original value and return a sound which is the sum of the
results.

In the Nyquist implementation, audio samples are only computed when they
are needed, and the second part of the seq is not evaluated until the ending time
(called the logical stop time) of the first part. It is still the case that when the
second part is evaluated, it will see *warp* bound to the ending time of the first
part.

A language detail: Even though Nyquist defers evaluation of the second part
of the seq, the expression can reference variables according to ordinary Lisp/SAL
scope rules. This is because the seq captures the expression in a closure, which
retains all of the variable bindings.

4.6 Simultaneous Behavior (sim)
Another operator is sim, which invokes multiple behaviors at the same time. For
example,

play 0.5 * sim(my-note(c4, q), my-note(d4, i))

will play both notes starting at the same time.
The operational rule for sim is: evaluate each behavior at the current *warp*

and return the sum of the results. (In SAL, the sim function applied to sounds is
equivalent to adding them with the infix + operator.
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4.7 Logical Stop Time
We have seen that the default behavior of seq is to cause sounds to begin at the
end of the previous sound in the sequence. What if we want to play a sequence
of short sounds separated by silence? One possibility is to insert silence (see
s-rest), but what if we want to play equally spaced short sounds? We have to
know how long each short sound lasts in order to know how much silence to insert.
Or what if sounds have long decays and we want to space them equally, requiring
some overlap?

All of these cases point to an important music concept: We pay special atten-
tion to the beginnings of sounds, and the time interval between these onset times
(often called IOI for “Inter-Onset Interval”) is usually more important than the
specific duration of the sound (or note). Thus, spacing notes according to their
duration is not really a very musical idea.

Instead, we can try to separate the concepts of duration and IOI. In music
notation, we can write a quarter note, meaning “play this sound for one beat,” but
put a dot over it, meaning “play this sound short, but it still takes a total of one
beat.” (See Figure 4.4.) It is not too surprising that music notation and theory
would have rather sophisticated concepts regarding the organization of sound in
time.

Figure 4.4: Standard quarter notes nominally fill an entire beat. Staccato quarter
notes, indicated by the dots, are played shorter, but they still occupy a time in-
terval of one beat. The “on” and “off” time of these short passages is indicated
graphically below each staff of notation.

Nyquist incorporates this musical thinking into its representation of sounds.
A sound in Nyquist has one start time, but there are effectively two “stop” times.
The signal stop is when the sound samples end. After that point, the sound is
considered to continue forever with value of zero. The logical stop marks the
“musical” or “rhythmic” end of the sound. If there is a sound after it (e.g. in a
sequence computed by seq), the next sound begins at this logical stop time of the
sound.

The logical stop is usually the signal stop by default, but you can change it
with the set-logical-stop function. For example, the following will play a
sequence of 3 plucked-string sounds with durations of 2 seconds each, but the
IOI, that is, the time between notes, will be only 1 second.

play seq(set-logical-stop(pluck(c4) ~ 2, 1),
set-logical-stop(pluck(c4) ~ 2, 1),
set-logical-stop(pluck(c4) ~ 2, 1))

4.8 Sequential and Simultaneous Iteration
Just as procedural languages have constructs such as for loops that iterate blocks
of code, usually with a loop index variable that takes on values of 0, 1, 2, ... n−1,
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Nyquist has special forms to instantiate n behaviors simultaneously or sequen-
tially. Try the following two examples to play a chord and an arpeggio using
simrep and seqrep:

play simrep(i, 6, piano-note(3, c4 + i * 5, 100))
play seqrep(i, 6, piano-note(0.3, c4 + i * 5, 100))

In these little programs, the variable i takes on values 0, 1, 2, 3, 4 and 5,
producing pitches 60, 65, 70, 75, 80 and 85. (Note that if we name the loop
variable i, it will “hide” the global binding of i which represents the eIghth note
duration of 0.5.) See the Nyquist Reference Manual for more about simrep and
seqrep.

4.9 Scores in Nyquist
Scores in Nyquist (introduced in Section ??) indicate “sound events,” which con-
sist of functions to call and parameters to pass to them. For each sound event there
is also a start time and a “duration,” which is really a Nyquist stretch factor. When
you render a score into a sound (usually by calling timed-seq or executing the
function sound-play), each sound event is evaluated by adjusting the environ-
ment according to the time and duration as if you wrote

sound-event(parameters) ~ duration @ time
The resulting sounds are then summed to form a single sound.

4.10 Summary
In this unit, we covered frequency modulation and FM synthesis. Frequency mod-
ulation refers to anything that changes pitch within a sound. Frequency modula-
tion at audio rates can give rise to many partials, making FM Synthesis a practical,
efficient, and versatile method of generating complex evolving sounds with a few
simple control parameters.

All Nyquist sounds are computed by behaviors in an environment that can
be modified with transformations. Functions describe behaviors. Each behavior
can have explicit parameters as well as implicit environment values, so behaviors
represent classes of sounds (e.g. piano tones), and each instance of a behavior can
be different. Being “different” includes having different start times and durations,
and some special constructs in Nyquist, such as sim, seq, at (@) and shift (~)
use the environment to organize sounds in time. These concepts are also used to
implement scores in Nyquist.
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