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Chapter 3

Sampling Theory Introduction
Topics Discussed: Sampling Theory, Analog to/from Digital Conversion,
Fourier Synthesis, Aliasing, Quantization Noise, Amplitude Modulation

The principles which underlie almost all digital audio applications and de-
vices, be they digital synthesis, sampling, digital recording, or CD or iPod play-
back, are based on the basic concepts presented in this chapter. New forms of
playback, file formats, compression, synthesis, processing and storage of data are
all changing on a seemingly daily basis, but the underlying mechanisms for con-
verting real-world sound into digital values and converting them back into real-
world sound has not varied much since Max Mathews developed MUSIC I in 1957
at Bell Labs.

The theoretical framework that enabled musical pioneers such as Max Math-
ews to develop digital audio programs stretches back over a century. The ground-
breaking theoretical work done at Bell Labs in the mid-20th century is worth not-
ing. Bell Labs was concerned with transmitting larger amounts of voice data over
existing telephone lines than could normally be sent with analog transmissions,
due to bandwidth restrictions. Many of the developments pertaining to computer
music were directly related to work on this topic.

Harry Nyquist, a Swedish-born physicist laid out the principles for sampling
analog signals at even intervals of time and at twice the rate of the highest fre-
quency so they could be transmitted over telephone lines as digital signals [?],
even though the technology to do so did not exist at the time. Part of this work is
now known as the Nyquist Theorem. Nyquist worked for AT&T, then Bell Labs.
Twenty years later, Claude Shannon, mathematician and early computer scientist,
also working at Bell Labs and then M.I.T., developed a proof for the Nyquist the-
ory.1 The importance of their work to information theory, computing, networks,
digital audio, digital photography and computer graphics (images are just sig-
nals in 2D!) cannot be overstated. Pulse Code Modulation (PCM), a widely used
method for encoding and decoding binary data, such as that used in digital audio,
was also developed early on at Bell Labs, attributed to John R. Pierce, a brilliant
engineer in many fields, including computer music.

In this chapter, we will learn the basic theory of sampling, or representing
continuous functions with discrete data.

1The Shannon Theorem [?], a pioneering work in information theory, should not be confused with
the Shannon Juggling Theory of the same author, in which he worked out the mathematics of juggling
numerous objects ((F+D)H=(V+D)N, where F is the time an object spends in the air, D is the time a
object spends in a hand, V is the time a hand is vacant, N is the number of objects juggled, and H is
the number of hands)–he was an avid juggler as well.
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3.0.1 Intuitive Approach
The world is continuous. Time marches on and on, and there are plenty of things
that we can measure at any instant. For example, weather forecasters might keep
an ongoing record of the temperature or barometric pressure. If you are in the
hospital, the nurses might be keeping a record of your temperature, your heart
rate, or your brain waves. Any of these records gives you a function f (t) where,
at a given time t, f (t) is the value of the particular thing that interests you.

Figure 3.1: Carbon dioxide concentration data from climate.nasa.gov.

Figure 3.1 represents a continuous function of time. What we mean by “con-
tinuous” is that at any instant of time the function takes on a well-defined value,
so that it makes a squiggly line graph that could be traced without the pencil ever
leaving the paper. This might also be called an analog function. Of course, the
time series that interest us are those that represent sound. In particular, we want
to take these time series, stick them on the computer, and play with them!

Now, if you’ve been paying attention, you may realize that at this moment
we’re in a bit of a bind: sound is a continuous function. That is, at every in-
stant in time, we could write down a number that is the value of the function at
that instant—–how much your eardrum has been displaced, the instantaneous air
pressure, voltage from a microphone, and so on. But such a continuous function
would provide an infinite list of numbers (any one of which may have an infinite
expansion, like = 3.1417...), and no matter how big your computer is, you’re going
to have a pretty tough time fitting an infinite collection of numbers on your hard
drive.

So how do we do it? How can we represent sound as a finite collection of
numbers that can be stored efficiently, in a finite amount of space, on a computer,
and played back and manipulated at will? In short, how do we represent sound
digitally? That’s the problem that we’ll investigate in this chapter.

Somehow we have to come up with a finite list of numbers that does a good
job of representing our continuous function. We do it by sampling the original
function at some predetermined rate, called the sampling rate, recording the value
of the function at that moment. For example, maybe we only record the tempera-
ture every 5 minutes. The graph in Figure 3.1 really comes from discrete samples
obtained from ice cores, so this is also an example of sampling to represent a con-
tinuous function using discrete values. For sound we need to go a lot faster, and
we often use a special device that grabs instantaneous amplitudes at rapid, audio
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rates (called an analog to digital converter, or ADC).
A continuous function is also called an analog function, and, to restate the

problem, we have to convert analog functions to lists of samples, in binary, which
is the fundamental way that computers store information. In computers, think of
a digital sound as a function of location in computer memory. That is, sounds are
stored as lists of numbers, and as we read through them we are basically creating
a discrete function of time of individual amplitude values.

Figure 3.2: A pictorial description of the recording and playback of sounds
through an ADC/DAC.

In analog to digital conversions, continuous functions (for example, air pres-
sures, sound waves, or voltages) are sampled and stored as numerical values. (See
Figure 3.2.) In digital to analog conversions, numerical values are interpolated by
the converter to force some continuous system (such as amplifiers, speakers, and
subsequently the air and our ears) into a continuous vibration. Interpolation just
means smoothly transitioning between the discrete numerical values.

3.0.2 Analog Versus Digital
The distinction between analog and digital information is fundamental to the
realm of computer music (and in fact computer anything!). In this section, we’ll
offer some analogies, explanations, and other ways to understand the difference
more intuitively.

Imagine watching someone walking along, bouncing a ball. Now imagine that
the ball leaves a trail of smoke in its path. What does the trail look like? (See
Figure 3.3.) Probably some sort of continuous zigzag pattern, right?

Figure 3.3: The path of a bouncing ball.

OK, keep watching, but now blink repeatedly. What does the trail look like
now? Because we are blinking our eyes, we’re only able to see the ball at discrete
moments in time. It’s on the way up, we blink, now it’s moved up a bit more, we
blink again, now it may be on the way down, and so on. We’ll call these snapshots
samples because we’ve been taking visual samples of the complete trajectory that
the ball is following. (See Figure 3.4.) The rate at which we obtain these samples
(blink our eyes) is called the sampling rate.

It’s pretty clear, though, that the faster we sample, the better chance we have
of getting an accurate picture of the entire continuous path along which the ball
has been traveling.
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Figure 3.4: The same path, but sampled by blinking.

What’s the difference between the two views of the bouncing ball: the blinking
and the nonblinking? Each view pretty much gives the same picture of the ball’s
path. We can tell how fast the ball is moving and how high it’s bouncing. The only
real difference seems to be that in the first case the trail is continuous, and in the
second it is broken, or discrete. That’s the main distinction between analog and
digital representations of information: analog information is continuous, while
digital information is not.

3.0.3 Analog and Digital Waveform Representations
Now let’s take a look at two time domain representations of a sound wave, one
analog and one digital, in Figure 3.5.

Figure 3.5: An analog waveform and its digital cousin: the analog waveform has
smooth and continuous changes, and the digital version of the same waveform has
a stairstep look. The black squares are the actual samples taken by the computer.
Note that the grey lines are only for show – all that the computer knows about
are the discrete points marked by the black squares. There is nothing in between
those points stored in the computer.

The gray “staircase” waveform in Figure 3.5 emphasizes the point that digi-
tally recorded waveforms are apparently missing some original information from
analog sources. However, by increasing the number of samples taken each sec-
ond (the sample rate), as well as increasing the accuracy of those samples (the
resolution), an extremely accurate recording can be made. In fact, we can prove
mathematically that discrete samples can represent certain continuous functions
without any loss of information! And in practice, we can use this theory to record
audio with imperceptible loss or distortion.

3.1 Sampling Theory
So now we know that we need to sample a continuous waveform to represent it
digitally. We also know that the faster we sample it, the better. But this is still a
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little vague. How often do we need to sample a waveform in order to achieve a
good representation of it?

The answer to this question is given by the Nyquist sampling theorem, which
states that to represent a signal well, the sampling rate (or sampling frequency –
not to be confused with the frequency content of the sound) needs to be at least
twice the highest frequency contained in the sound.

3.1.1 Frequency Content
We’ll be giving a much more precise description of the frequency domain later,
but for now we can simply think of sounds as combinations of more basic sounds
that are distinguished according to their rate of vibration, called frequency. Per-
ceptually, higher frequencies are associated with higher pitch height and higher
brightness.

As we learned earlier, the basic sound is called a sinusoid, the general term
for sine-like waveforms. The term pitch height refers to our perception of these
components if we could hear them separately, but ordinarily, we cannot. To sum-
marize, sounds can be decomposed into the sum of basic sinusoidal components,
each of which has a frequency.

All sound can ve viewed as a combination of these sinusoids with varying
amplitudes. It’s sort of like making soup and putting in a bunch of basic spices:
the flavor will depend on how much of each spice you include, and you can change
things dramatically when you alter the proportions. The sinusoids are our basic
sound spices! The complete description of how much of each of the frequencies
is used is called the spectrum of the sound.

Since sounds change over time, the proportions of each of the sinusoids changes
too. Just like when you spice up that soup, as you let it boil the spice proportion
may be changing as things evaporate.

3.1.2 Highest Frequency in a Sound
Consider Figure 3.6. The graph at the top is our usual time domain graph, or
audiogram, of the waveform created by a five-note whistled melody. Time is on
the x-axis, and amplitude is on the y-axis.

The bottom graph is the same melody, but this time we are looking at a time-
frequency representation. The idea here is that if we think of the whistle as made
up of contiguous small chunks of sound, then over each small time period the
sound is composed of differing amounts of various pieces of frequency. The
amount of frequency y at time t is encoded by the brightness of the pixel at the
coordinate (t, y). The darker the pixel, the more of that frequency at that time. For
example, if you look at time 0.4 you see a band of white, except near 2,500, show-
ing that around that time we mainly hear a pure tone of about 2,500 Hz, while at
0.8 seconds, there are contributions all around from about 0 Hz to 5,500 Hz, but
stronger ones at about 2,500 Hz and 200 Hz.

It looks like the signal only contains frequencies up to 8,000 Hz. If this were
the case, we would need to sample the sound at a rate of 16,000 Hz (16 kHz) in
order to accurately reproduce the sound. That is, we would need to take sound
bites (bytes?!) 16,000 times a second.

In the next section, when we talk about representing sounds in the frequency
domain (as a combination of various amplitude levels of frequency components,
which change over time) rather than in the time domain (as a numerical list of
sample values of amplitudes), we’ll learn a lot more about the ramifications of
the Nyquist theorem for digital sound. For example, since the human ear only
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Figure 3.6: Two graphical representations of sound.
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responds to sounds up to about 20,000 Hz, we need to sample sounds at least
40,000 times a second, or at a rate of 40,000 Hz, to represent these sounds for hu-
man consumption. You may be wondering why we even need to represent sonic
frequencies that high (when the piano, for instance, only goes up to the high 4,000
Hz range in terms of pitches or repetition rate.). The answer is timbral, particu-
larly spectral. Those higher frequencies do exist and fill out the descriptive sonic
information.

Just to review: we measure frequency in cycles per second (cps) or Hertz (Hz).
The frequency range of human hearing is usually given as 20 Hz to 20,000 Hz,
meaning that we can hear sounds in that range. Knowing that, if we decide that
the highest frequency we’re interested in is 20 kHz, then according to the Nyquist
theorem, we need a sampling rate of at least twice that frequency, or 40 kHz.

3.2 The Frequency Domain
Earlier, we talked about the basic atoms of sound—–the sine wave, and about
the function that describes the sound generated by a vibrating tuning fork. In this
section we’re talking a lot about the frequency domain. If you remember, our basic
units, sine waves, only had two parameters: amplitude and frequency. It turns out
that these dull little sine waves are going to give us the fundamental tool for the
analysis and description of sound, and especially for the digital manipulation of
sound. That’s the frequency domain: a place where lots of little sine waves are
our best friends.

But before we go too far, it’s important to fully understand what a sine wave
is, and it’s also wonderful to know that we can make these simple little curves
ridiculously complicated, too. And it’s useful to have another model for generat-
ing these functions. That model is called a phasor.

3.2.1 Description of a Phasor
Think of a bicycle wheel suspended at its hub. We’re going to paint one of the
spokes bright red, and at the end of the spoke we’ll put a red arrow. We now
put some axes around the wheel—the x-axis going horizontally through the hub,
and the y-axis going vertically. We’re interested in the height of the arrowhead
relative to the x-axis as the wheel—our phasor—spins around counterclockwise.
(See Figure 3.7.)

In other words, if we trace the arrow’s location on the circle and measure the
height of the arrow on the y-axis as our phasor goes around the circle, the resulting
curve is a sine wave!

As time goes on, the phasor goes round and round. At each instant, we mea-
sure the height of the dot over the x-axis. Let’s consider a simple example first.
Suppose the wheel is spinning at a rate of one revolution per second. This is its
frequency (and remember, this means that the period is 1 second/revolution). This
is the same as saying that the phasor spins at a rate of 360 degrees per second,
or better yet, 2π radians per second (if we’re going to be mathematicians, then
we have to measure angles in terms of radians). So 2π radians per second is the
angular velocity of the phasor.

This means that after 0.25 second the phasor has gone π/2 radians (90 de-
grees), and after 0.5 second it’s gone π radians or 180 degrees, and so on. So, we
can describe the amount of angle that the phasor has gone around at time t as a
function, which we call θ(t).
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Figure 3.7: Sine waves and phasors. As the sine wave moves forward in time, the
arrow goes around the circle at the same rate. The height of the arrow (that is, how
far it is above or below the x-axis) as it spins around in a circle is described by the
sine wave.

Now, let’s look at the function given by the height of the arrow as time goes
on. The first thing that we need to remember is a little trigonometry.

Figure 3.8: Triangle.

The sine and cosine of an angle are measured using a right triangle. For our
right triangle, the sine of θ , written sin(θ) is given by the equation: sin(θ) = a/c
(See Figure 3.8.)

This means that: a = c× sin(θ)
We’ll make use of this in a minute, because in this example a is the height of

our triangle.
Similarly, the cosine, written cos(θ), is: cos(θ) = b/c
This means that: b = c× cos(θ). This will come in handy later, too.
Now back to our phasor. We’re interested in measuring the height at time t,

which we’ll denote as h(t). At time t, the phasor’s arrow is making an angle of
θ(t) with the x-axis. Our basic phasor has a radius of 1, so we get the follow-
ing relationship: h(t) = sin(θ(t)) = sin(2πt). We also get this nice graph of a
function, which is our favorite old sine curve.

Now, how could we change this curve? Well, we could change the ampli-
tude—this is the same as changing the length of our arrow on the phasor. We’ll
keep the frequency the same and make the radius of our phasor equal to 3. Then
we get: h(t) = 3× sin(2πt) Then we get the nice curve in Figure 3.10, which is
another kind of sinusoid (bigger!).

Now let’s start messing with the frequency, which is the rate of revolution
of the phasor. Let’s ramp it up a notch and instead start spinning at a rate of
five revolutions per second. Now: θ(t) = 5 × (2πt) = 10πt. This is easy to
see since after 1 second we will have gone five revolutions, which is a total of
10π radians. Let’s suppose that the radius of the phasor is 3. Again, at each
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Figure 3.9: Basic sinusoid.

Figure 3.10: Bigger sine curve.
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moment we measure the height of our arrow (which we call h(t)), and we get:
h(t) = 3× sin(θ(t)) = 3× sin(10πt). Now we get the sinusoid in Figure 3.11.

Figure 3.11: Bigger, faster sine curve.

In general, if our phasor is moving at a frequency of v revolutions per second
and has radius A, then plotting the height of the phasor is the same as graphing
this sinusoid: h(t) = A× sin(v× 2πt). Now we’re almost done, but there is one
last thing we could vary: we could change the place where we start our phasor
spinning. For example, we could start the phasor moving at a rate of five revolu-
tions per second with a radius of 3, but start the phasor at an angle of π/4 radians,
instead.

Now, what kind of function would this be? Well, at time t = 0 we want to be
taking the measurement when the phasor is at an angle of π/4, but other than that,
all is as before. So the function we are graphing is the same as the one above, but
with a phase shift of π/4. The corresponding sinusoid is: h(t) = 3× sin(10πt +
π/4), which is shown in Figure 3.12.

Figure 3.12: Changing the phase.

Our most general sinusoid of amplitude A, frequency v, and phase shift φ has
the form: h(t) = A× sin(v× 2πt +φ), which is more commonly expressed with
frequency ω in radians per second instead of frequency v in cycles per second:
h(t) = A× sin(ωt +φ).
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A particularly interesting example is what happens when we take the phase
shift equal to 90 degrees, or π/2 radians. Let’s make it nice and simple, with
frequency equal to one revolution per second and amplitude equal to 1 as well.
Then we get our basic sinusoid, but shifted ahead π/2. Does this look familiar?
This is the graph of the cosine function!

Figure 3.13: 90-degree phase shift (cosine).

You can do some checking on your own and see that this is also the graph that
you would get if you plotted the displacement of the arrow from the y-axis. So
now we know that a cosine is a phase-shifted sine!

3.2.2 Fourier Analysis
Now we know that signals can be decomposed into a (possibly infinite) sum of
phasors or partials or sinusoids—however you want to look at it. But how do we
determine this sum?

The Fourier Transform, named for French scientist and mathematician Jean
Baptiste Fourier (1768–1830), is a surprisingly simple and direct formula to write
this infinite sum. Since we have to deal with phase somehow, we will begin with
an expression of the Fourier Transform that keeps the sine and cosine parts sepa-
rate. The signal we want to analyze is f (t). The result of the analysis will be two
functions. R(ω) is a function of frequency (in radians per second) that gives us
the amplitude of a cosine at that frequency, and X(ω) is a function of frequency
that gives us the amplitude of a sine at that frequency.

R(ω) =
∫

∞

−∞

f (t)cos(ωt)dt

X(ω) =−
∫

∞

−∞

f (t)sin(ωt)dt

Why the minus sign when computing X? It relates to whether the positive di-
rection of rotation is considered clockwise or counterclockwise. You would think
the convention would be based on the simplest form (so drop the minus sign), but
the Fourier Transform is closely related the the Inverse Fourier Transform (how do
we construct a time domain signal from it’s frequency domain representation?),
and one or the other transform has to have a minus sign, so this is the convention.

Note that this is all continuous math. We will get back to sampling soon, but
if we want to understand what sampling does to a continuous signal, we have to
deal with continuous functions.
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Note also, and this is very important, that we are “integrating out” all time.
The functions R and X are functions of frequency. It does not make sense (at this
point) to say “What is the Fourier Transform of the signal at time t?”—instead,
we transform infinite functions of time ( f (t)) into infinite functions of frequency,
so all notions of time are absorbed into frequencies.

What About Phase?

We saw in the previous section how cosine is simply a sine function that is “phase
shifted,” and we can achieve any phase by some combination of sine and cosine at
the same frequency. Thus, we get to choose: Do we want to talk about sinusoids
with frequency, amplitude and phase? Or do we want to talk about cosines and
sines, each with just frequency and amplitude? The two are equivalent, so we
started with cosines and sines. Once we have the cosine R(ω) and sine X(ω) parts,
we can derive a representation in terms of phase. For any given ω of interest, we
have:

R(ω)× cos(ωt)+X(ω)× sin(ωt) =√
R(ω)2 +X(ω)2 × sin(ωt +arctan(X(ω)/R(ω)))

In other words, we can write the partial with frequency ω as A(ω)× sin(ωt +
θ(ω)) where

A(ω) =
√

R(ω)2 +X(ω)2

and
θ(ω) = arctan(X(ω)/R(ω)))

Complex Representation

Rather than separating the sine and cosine parts, we can use complex numbers
because, among other properties, each complex number has a real part and an
imaginary part. We can think of a phasor as rotating in the complex plane, so a
single complex number can represent both amplitude and phase:

F(ω) = R(ω)+ j ·X(ω)

Here, j represents
√
−1. You probably learned to use i for imaginary numbers,

but i is also the electrical engineering symbol for current (usually in units of Am-
peres), and since digital signal processing falls largely into the domain of electrical
engineering, we go along with the EE’s and replace i by j.

Now things get interesting... Recall Euler’s formula:2

e jx = cos(x)+ j · sin(x)

If we rewrite the pair R,X as R+ j ·X , and use Euler’s formula, we can derive:

F(ω) =
∫

∞

−∞

f (t)e− jωtdt

2Which one is Euler’s formula? There are no less than seven formulas named for Euler, not to
mention conjectures, equations, functions, identities, numbers, theorems and laws. This is the one in
complex analysis. Euler invented so much mathematics that many things are named for the first person
that proved Euler’s original idea, just to spread the fame a little. There’s a whole article in Wikipedia
named “List of things named after Leonhard Euler,” but I digress ....
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Example Spectrum

The result of a Fourier Transform is a continuous function of frequency sometimes
called the frequency spectrum or just spectrum. Figure 3.14 shows the spectrum
measured from a gamelan tone. You can see there is energy in a wide range of
frequencies, but also some peaks that indicate strong sinusoidal partials here and
there.

Figure 3.14: FFT plot of a gamelan instrument.

3.2.3 Fourier and the Sum of Sines
In this section, we’ll try to give some intuition into the spectrum, building on the
previous section.

A long time ago, Fourier proved the mathematical fact that any periodic wave-
form can be expressed as the sum of an infinite set of sine waves. The frequencies
of these sine waves must be integer multiples of some fundamental frequency.

In other words, if we have a trumpet sound at middle A (440 Hz), we know by
Fourier’s theorem that we can express this sound as a summation of sine waves:
440 Hz, 880Hz, 1,320Hz, 1,760 Hz..., or 1, 2, 3, 4... times the fundamental, each
at various amplitudes. This is rather amazing, since it says that for every periodic
waveform, if we know the repetition rate, we basically know the frequencies of
all of its partials. (Keep in mind however, that no trumpet player will ever play an
infinitely long, steady tone, and no real-life tone is truly periodic if the periodicity
comes to an end. We will not worry about this for now.)3

3By the way, periodic waveforms generally have clear pitches. In evolutionary terms, periodicity
implies an energy source to sustain the vibration, and pitch is a good first-order feature that tells us
whether the energy source is big enough to be a threat or small enough to be food. Think lion roar
vs. goat bleat. It should not be too surprising that animals—remember we are the life forms capable
of running away from danger and chasing after food—developed a sense of hearing, including pitch
perception, which at the most basic level serves to detect energy sources and estimate size.
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Figure 3.15: The spectrum of the sine wave has energy only at one frequency.
The triangle wave has energy at odd-numbered harmonics (meaning odd multiples
of the fundamental), with the energy of each harmonic decreasing as 1 over the
square of the harmonic number (1/N2). In other words, at the frequency that is N
times the fundamental, we have 1/N2 as much energy as in the fundamental.

Figure 3.15 shows some periodic waveforms and their associated spectra. The
partials in the sawtooth wave decrease in energy in proportion to the inverse of the
harmonic number (1/N). Pulse (or rectangle or square) waveforms have energy
over a broad area of the spectrum.

Real, Imaginary, Amplitude, Phase

In these drawing, we are carelessly forgetting about phase. Generally, we cannot
hear phase differences, but we are very adept at hearing amplitudes at different
frequencies. Therefore, we usually plot just the amplitude of the signal when
we plot the spectrum, and we ignore the phase. Recall that in terms of real and
imaginary parts, the amplitude is just the square root of the sum of squares:

A(ω) =
√

R(ω)2 +X(ω)2

3.3 Sampling and the Frequency Domain
Now that we understand something about the Fourier Transform, we return to our
problem of understanding sampling. What does sampling do to a signal? In the
continuous math world, we can model sampling as a simple multiplication of two
time domain signals, as shown in Figure 3.16.

This gets quite interesting in the frequency domain. Multiplying by a series
of impulses in the time domain (Figure 3.16) is equivalent to copying and shifting
the spectrum in the frequency domain (Figure 3.17). The copies are shifted by the
sampling rate, which of course is a frequency.
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Figure 3.16: Sampling is effectively multiplication in the time domain: We multi-
ply by 1 (or more properly an instantaneous but infinite impulse whose integral is
1) whereever we capture samples, and we remove the rest of the signal by multi-
plying by zero.

Figure 3.17: Sampling in the time domain gives rise to shifted spectral copies in
the frequency domain.

3.3.1 Negative Frequencies
Looking at Figure 3.17, you should be wondering why the spectrum is shown with
negative as well as positive frequencies. You can consider negative frequencies to
be just the result of the formulas for the Fourier Transform. While “negative
440 Hertz” may sound like nonsense, in mathematical terms, it is just a question
of writing sin(ωt) or sin(−ωt), but sin(−ωt) = sin(ωt + π), so we are really
talking about certain phase shifts. Since we mostly ignore phase anyway, we
often plot only the positive frequencies. In the case of sampling theory, we show
both negative and positive frequencies of the spectrum.

3.3.2 Aliasing
Notice in Figure 3.17 that after sampling, the copies of the spectrum come close
to overlapping. What would happen if the spectrum contained higher frequencies.
Figure 3.18 illustrates a broader spectrum.

Figure 3.18: A broader spectrum (contains higher frequencies) before sampling.

15

This pdf for ICM students only - ebook
and paperback available from amazon.com



Figure 3.19 illustrates the signal after sampling. What a mess! The copies of
the spectrum now overlap. The Nyquist frequency (one-half the sampling rate,
and one half the amount by which copies are shifted) is shown by a vertical dotted
line. Notice that there is a sort of mirror symmetry around that line: the origi-
nal spectrum extending above the Nyquist frequency is “folded” to become new
frequencies below the Nyquist frequency.

Figure 3.19: A broader spectrum (contains higher frequencies) after sampling.
While shown as separate overlapping copies here, the copies are in fact summed
into a single spectrum.

This is really bad because new frequencies are introduced and added to the
original spectrum. The frequencies are in fact aliases of the frequencies above
the Nyquist frequency. To avoid aliasing, it is necessary to sample at higher than
twice the frequency of the original signal.

In the time domain, aliasing is a little more intuitive, at least if we consider
the special case of a sinusoid. Figure 3.20 shows a fast sinusoid at a frequency
more than half the sample rate. This frequency is “folded” to become a lower
frequency below half the sample rate. Note that both sinusoids pass perfectly
through the available samples, which is why they are called aliases. They have the
same “signature” in terms of samples.

To summarize, the frequency range (bandwidth) of a sampled signal is deter-
mined by the sample rate. We can only capture and represent frequencies below
half the sample rate, which is also called the Nyquist rate or Nyquist frequency.

Figure 3.20: Aliasing, or foldover, happens when we sample a frequency that is
more than half the sampling rate. When the frequency we want to sample is too
high, we undersample and get an unwanted lower-frequency that is created by the
sampling process itself).

3.4 Sampling without Aliasing
In practice, we seldom have the luxury of controlling the bandwidth of our analog
signals. How do you tell the triangle player to make those tinkly sounds, but don’t
go above 22 kHz? The real world is full of high frequencies we cannot hear,
but which can become audible as aliases if we are not careful. The solution and
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standard practice is to filter out the high frequencies before sampling, as shown in
Figure 3.21.

Figure 3.21: Aliasing is avoided by removing frequencies above the Nyquist fre-
quency (half the sample rate) using a prefilter (sometimes called an anti-aliasing
filter.

3.4.1 Converting Back to Analog
A similar process is used to convert digital signals back to analog. If we were to
simply output a train of impulses based on the digital samples, the spectrum would
look like that in the lower half of Figure 3.17, with lots of very high frequencies
(in fact, these are aliases of all the sinusoids in the original spectrum). We remove
these unwanted parts of the signal with another filter as shown in Figure 3.22.

Figure 3.22: To convert a digital signal to analog, we need to remove the artifacts
of sampling. This is accomplished by sending the output of the digital-to-analog
converter first into a sample-and-hold circuit that holds the signal steady while the
converter is transitioning to the next sample value, then through a reconstruction
filter, which removes high frequencies above the Nyquist frequency.

3.5 Imperfect Sampling
So far, we have described sampling as if samples were real numbers obtained
without error. What happens in the imperfect real world, and what happens to
rounding errors, since real samples are actually integers with finite precision?

3.5.1 How to Describe Noise
To describe error in audio, we need a way to measure it. Since our hearing ba-
sically responds to audio in a logarithmic manner, the important thing is not the
absolute error but the ratio between the signal and the error. We call errors in
audio “noise,” and we measure the signal-to-noise ratio.

Ratio is so important in audio, and the range of signals and noise is so large,
that we use a special unit, the dB or decibel to represent ratios, or more precisely
logarithms of ratios. Given an amplitude ratio A, we can compute decibels as
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dB = 20log10(A). More details on bels and decibels will be covered starting in
Section ??. A handy constant to remember is a factor of 2 in amplitude is about 6
dB, so a factor of 4 is about 12 dB. What can you hear? A change of 1 dB is barely
noticeable. A change of 10 dB is easily noticeable, and your range of hearing is
about 10 of these big steps (around 100 dB).

3.5.2 Quantization Noise
What is the effect of rounding? Imagine that there is significant signal change
between each pair of samples and the true value of the signal we are capturing has
no preference for any value over any other. In that case, we can expect the signal
to fall randomly between two integer sample values. If we round to the nearest
value, the rounding error will be a uniformly distributed random number between
-0.5 and 0.5 (considering samples to be integers).

Figure 3.23 illustrates a signal being captured and the resulting rounding error.
Note that the samples must fall on the grid of discrete time points and discrete
integer sample values, but the actual signal is continuous and real-valued.

Rather than thinking of the signal as being recorded with error, consider this: If
we could subtract the quantization error from the original signal, then the original
signal would pass through integer sample values and we could capture the signal
perfectly! Thus, the effect of quantization error is to add random values in the
range -0.5 to +0.5 to the original signal before sampling.

It turns out that uniform random samples are white noise, so calling error
“noise” is quite appropriate. How loud is the noise? The resulting signal-to-noise
ratio, given M-bit samples, is 6.02M +1.76 dB. This is very close to saying “the
signal-to-noise ratio is 6 dB per bit.” You only get this signal-to-noise ratio if the
signal uses the full range of the integer samples. In real life, you always record
with some “headroom,” so you probably lose 6 to 12 dB of the best possible
signal. There is also a limit to how many bits you can use—remember that the
bits are coming from analog hardware, so how quiet can you make circuits, and
how accurately can you measure voltages? In practice, 16-bit converters offering
a theoretical 98 dB signal-to-noise ratio are readily available and widely used. 20-
and 24-bit converters (and even some described as “32-bit”’) are used in high-
end equipment, but these are not accurate to the least-significant bit, so the true
signal-to-noise ratio cannot be estimated merely by counting bits.

Figure 3.23: When a signal is sampled, the real-valued signal must be rounded
at each sample to the nearest integer sample value. The resulting error is called
quantization error.
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3.6 Sampling Summary
One amazing result of sampling theory is that if the signal being sampled has a
finite bandwidth, then we can sample the signal at discrete time points and com-
pletely recover the original continuous signal. It seems too good to be true that all
those infinitely many values between samples are not really necessary!

Aside from this startling theoretical finding, we learned that the sample rate
should be at least double that of the highest frequency of the signal. Also, error is
introduced by rounding samples to integers, an unavoidable step in the real world,
but the signal-to-noise ratio is about 6 dB per bit, so with 16 bit or more, we can
make noise virtually imperceptible.

3.7 Special Topics in Sampling

3.7.1 Dither
When we described quantization noise, we assumed that rounding error was ran-
dom. Now consider the case where the signal is a pure sine tone with amplitude
from -1.4 to +1.4. It should be clear that after rounding, this signal will progress
through sample values of -1, 0, 1, 0, -1, 0, 1, 0, ... (possibly repeating each of
these values, depending on frequency). This is anything but random, and this non-
random rounding will inject higher, possibly audible frequencies into the recorded
signal rather than noise. To avoid this unpleasant phenomenon, it is common to
actually add noise on purpose before sampling. The added noise “randomizes”
the rounding so that more audible artifacts are avoided.

This process of adding noise is called dithering. Dithering is also used in
computer graphics, photography and printing to avoid “posterized” effects when
rendering smooth color gradients. Another, more sophisticated way to use dither-
ing, also called noise shaping, is to design the spectrum of the added dither noise
to optimize the perceived signal-to-noise ratio. Since we are more sensitive to
some frequencies than others, when we add noise to a signal it is a good idea to
include more hard-to-hear frequencies in the noise than easy-to-hear noise. With
this trick, we can make the apparent quality of 16-bit audio better than 16-bits in
some frequency regions where we are most sensitive, by sacrificing the signal-to-
noise ratio at frequencies (especially high ones) where we do not hear so well.

3.7.2 Oversampling
Another great idea in sampling is oversampling. A problem with high-quality dig-
ital audio conversion is that we need anti-aliasing filters and reconstruction filters
that are (1) analog and (2) have very difficult to achieve requirements, namely that
the filter passes everything without alteration right up to the Nyquist frequency,
then suddenly cuts out everything above that frequency. Filters, typically have
a smooth transition from passing signal to cutting signals, so anti-aliasing filters
and reconstruction filters used to be marvels of low-noise audio engineering and
fabrication.

With oversampling, the idea is to sample at a very high sample rate to avoid
stringent requirements on the analog anti-aliasing filter. For example, suppose
your goal is to capture frequencies up to 20 kHz. Using a sample rate of 44.1 kHz
means your anti-aliasing filter must pass 20 kHz and reject everything above 22.05
kHz (half of 44.1 kHz). This requires an elaborate and expensive filter. Instead,
suppose you (over)sample at 176.4 kHz so you can capture up to 88.2 kHz. Now,
your analog filter can pass everything up to 20 kHz and does not need to reject
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everything until 88.2 kHz, so there are about 2 octaves to make that transition, a
much easier filter to build in practice.

But, now you have a 176.4 kHz sample rate, and some frequencies between
20 kHz and 88.2 kHz leaked through your cheap filter. No problem! We can
implement another filter in the digital domain to get rid of everything above 20
kHz and then simply drop 3 out of 4 samples to get down to the desired 44.1 kHz
sample rate.

Similarly, we can digitally up-sample from 44.1 kHz to 176.4 kHz just before
digital-to-analog conversion so that the high output frequencies start above 88.2
kHz, making it easy to build a high-quality, low-noise reconstruction (smoothing)
filter.

Oversampling was invented by Paul Lansky, a computer music composer at
Princeton, and first published as a letter to Computer Music Journal. Paul did not
patent his invention or anticipate that it would be used in billions of digital audio
devices.

3.8 Amplitude Modulation
Time-domain representations show us a lot about the amplitude of a signal at
different points in time. Amplitude is a word that means, more or less, “how
much of something,” and in this case it might represent pressure, voltage, some
number that measures those things, or even the in-out deformation of the eardrum.

For example, the time-domain picture of the waveform in Figure 3.24 starts
with the attack of the note, continues on to the steady-state portion (sustain) of the
note, and ends with the cutoff and decay (release). We sometimes call the attack
and decay transients because they only happen once and they don’t stay around!
We also use the word transient, perhaps more typically, to describe timbral fluctu-
ations during the sound that are irregular or singular and to distinguish those kinds
of sounds from the steady state.

From the typical sound event shown in Figure 3.24, we can tell something
about how the sound’s amplitude develops over time (what we call its amplitude
envelope).

Figure 3.24: A time-domain waveform. It’s easy to see the attack, steady-state,
and decay portions of the “note” or sound event, because these are all pretty much
variations of amplitude, which time-domain representations show us quite well.
The amplitude envelope is a kind of average of this picture.

3.8.1 Envelopes in Sound Synthesis
In sound synthesis, we often start with a steady tone such as a periodic waveform
and multiply by an envelope function to create an artificial amplitude envelope. In
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Nyquist (the programming language), we write this using the multiply (*) operator
in expressions that typically look like:

steady-signal-expression * envelope-expression

In Nyquist, you can use the pwl or env functions, for example, to make en-
velopes, as we have seen before.

Another type of amplitude modulation is amplitude vibrato, often called tremolo4,
where we want a wavering amplitude. One way to create this effect is to vary the
amplitude using a low-frequency oscillator (LFO). However, be careful not to sim-
ply multiply by the LFO. Figure 3.25) shows what happens to a signal multiplied
by lfo(6).

To get a more typical vibrato, offset the lfo signal so that it does not go
through zero. Figure 3.26 shows an example. You can play the expressions from
Figures 3.25 and 3.26 and hear the difference. To further test your understanding,
explain how Figure 3.25 appears to have 3 periods of oscillation in 0.25 s, while
Figure 3.26 appears to have only 1.5 periods of oscillation, even though the LFO
for both figures has a frequency of 6 Hz.

Figure 3.25: The output from osc(c4) * lfo(6). The signal has extreme pulses
at twice the LFO rate because osc(6) crosses through zero twice for each cycle.
Only 1/4 second is plotted.

Figure 3.26: The output from osc(c4) * (0.7 + 0.3 * lfo(6)). The signal
vibrates at 6 Hz and does not diminish to zero because the vibrato expression
contains an offset of 0.7.

3.8.2 Amplitude Modulation by Audible Frequencies
If the modulation rate shown in Figure 3.25 is increased from 6 Hz into the audible
range, some very interesting things happen. In the frequency domain, the origi-
nal spectrum is shifted up and down by the modulation frequency. So a rapidly
modulated sinusoid becomes two sinusoids, and there is no energy at the original
frequency—it is all shifted. Figure 3.27 shows the modulation of an 880 Hz signal
by a 220 Hz modulation.

In more general terms, an entire complex signal can be transformed by am-
plitude modulation. Figure 3.28 shows the effect of modulating a complex sig-
nal indicated by the trapezoidal-shaped spectrum. The original spectrum (dotted
lines) is shifted up and down. This effect is also known as ring modulation. It
has a characteristic metalic sound because shifted harmonic spectra are no longer
harmonic.

4Often, electronic musicians define vibrato to mean periodic frequency variation (only), and
tremolo to mean periodic amplitude variation, but vibrato in acoustic instruments and voice, as named
and produced by musicians, consists of variations in amplitude, frequency, and relative strengths of
partials. Furthermore, musicians use tremolo to mean a rapid repetition of notes at the same pitch. I
use the terms“amplitude vibrato,” “frequency vibrato,” and “spectral vibrato,” or just “vibrato” if the
meaning is clear, and I avoid the overloaded term “tremolo.”
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Figure 3.27: The result of modulating (multiplying) one sinusoid at 880 Hz by
another at 220 Hz.

Figure 3.28: The result of modulating (multiplying) a complex signal (illustrated
by the trapezoidal spectrum in dotted lines) by a sinusoidal modulator. The origi-
nal spectrum is shifted up and down by the frequency of the modulator.

The modulation need not be a pure sinusoid. If the sinusoid is offset (as in
Figure 3.26), the original frequencies will be retained. This is a direct result of the
distributive property of multiplication over addition, which says adding an offset
to the modulation signal before multiplying is equivalent to adding the signal after
multiplying:

signal × (modulation+1) = signal ×modulation+ signal ×1

Adding a constant offset (with a frequency of 0 Hz) is just a special case of mod-
ulation signals with multiple frequencies. The result of using a rich modulation
spectrum is the orignal signal shifted up and down by each frequency contained
in the modulation.

3.9 Summary
Sampling obtains a discrete digital representation of a continuous signal. Al-
though intuition suggests that the information in a continuous signal is infinite,
this is not the case in practice. Limited bandwith (or the fact that we only care
about a certain bandwidth) means that we can capture all frequencies of interest
with a finite sampling rate. The presence of noise in all physical systems means
that a small amount of quantization noise is not significant, so we can represent
each sample with a finite number of bits.

Dither and noise shaping can be applied to signals before quantization occurs
to reduce any artifacts that might occur due to non-random rounding — typically
this occurs in low amplitude sinusoids where rounding errors can become periodic
and audible. Another interesting technique is oversampling, where digital low-
pass filtering performs some of the work typically done by a hardware low-pass
filter to prevent aliasing.

Amplitude modulation at low frequencies is a fundamental operation used to
control loudness in mixing and to shape notes and other sound events in synthe-
sis. We typically scale the signal by a factor from 0 to 1 that varies over time
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to create envelopes and vibrato effects. On the other hand, periodic amplitude
modulation at audible frequencies acts to shift frequencies up and down by the
modulating frequency. This can be used as a form of distortion, for synthesis, and
other effects.
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