
Introduction to
Computer Music

Week 2

Instructor: Prof. Roger B. Dannenberg

Topics Discussed: Unit Generators, Implementation,
Functional Programming, Wavetable Synthesis, Scores in

Nyquist, Score Manipulation

This pdf for ICM students only - ebook
and paperback available from amazon.com

Chapter 2

Basics of Synthesis
Topics Discussed: Unit Generators, Implementation, Functional Program-
ming, Wavetable Synthesis, Scores in Nyquist, Score Manipulation

2.1 Unit Generators
In the 1950’s Max Mathews conceived of sound synthesis by software using net-
works of modules he called unit generators. Unit generators (sometimes called
ugens) are basic building blocks for signal processing in many computer music
programming languages.

Unit generators are used to construct synthesis and signal processing algo-
rithms in software. For example, the simple unit generator osc generates a si-
nusoidal waveform at a fixed frequency. env generates an “envelope” to control
amplitude. Multiplication of two signals can be achieved with a mult unit gener-
ator (created with the * operator), so

osc(c4) * env(0.01, 0.02, 0.1, 1, 0.9, 0.8)

creates a sinusoid with amplitude that varies according to an envelope.
Figure 2.1 illustrates some unit generators. Lines represent audio signals, con-

trol signals and numbers.

Figure 2.1: Some examples of Unit Generators.

In many languages, unit generators can be thought of as interconnected ob-
jects that pass samples from object to object, performing calculations on them. In
Nyquist, we think of unit generators as functions with sounds as inputs and out-
puts. Semantically, this is an accurate view, but since sounds can be very large
(typically about 10MB/minute), Nyquist uses a clever implementation based on
incremental lazy evaluation so that sounds rarely exist as complete arrays of sam-
ples. Instead, sounds are typically computed in small chunks that are “consumed”
by other unit generators and quickly deleted to conserve memory.

1

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 2.2: Combining unit generators.

Figure 2.2 shows how unit generators can be combined. Outputs from an
oscillator and an envelope generator serve as inputs to the multiply unit generator
in this figure.

Figure 2.3 shows how the “circuit diagram” or “signal flow diagram” notation
used in Figure 2.2 relates to the functional notation of Nyquist. As you can see,
whereever there is output from one unit generator to the input of another as shown
on the left, we can express that as nested function calls as shown in the expression
on the right.

Figure 2.3: Unit Generators in Nyquist.

2.1.1 Some Basic Unit Generators
The osc function generates a sound using a table-lookup oscillator. There are a
number of optional parameters, but the default is to compute a sinusoid with an
amplitude of 1.0. The parameter 60 designates a pitch of middle C. (Pitch speci-
fication will be described in greater detail later.) The result of the osc function is
a sound. To hear a sound, you must use the play command, which plays the file
through the machine’s D/A converters. E.g. you can write play osc(c4) to play
a sine tone.

It is often convenient to construct signals in Nyquist using a list of (time, value)
breakpoints which are linearly interpolated to form a smooth signal. The function
pwl is a versatile unit generator to create Piece-Wise Linear (PWL) signals and
will be described in more detail below.

An envelope constructed by pwl is applied to another sound by multiplication
using the multiply (*) operator. For example, you can make the simple sine tone
sound smoother by giving it an envelope:

play osc(c4) * pwl(0.03, 1, 0.8, 1, 1)

While this example shows a smooth envelope multiplied by an audio signal,

2

This pdf for ICM students only - ebook
and paperback available from amazon.com

you can also multiply audio signals to achieve what is often called ring modula-
tion (see also “Amplitude Modulation by Audible Frequencies” on page ??. For
example:

play osc(c4) * osc(g4)

2.1.2 Evaluation
Normally, Nyquist expressions (whether written in SAL or Lisp syntax) evaluate
their parameters, then apply the function. If we write f(a, b), Nyquist will
evaluate a and b, then pass the resulting values to function f.

Sounds are different. If Nyquist evaluated sounds immediately, they could be
huge. Even something as simple as multiply could require memory for two huge
input sounds and one equally huge output sound. Multiplying two 10-minute
sounds would require 30 minutes’ worth of memory, or about 300MB. This might
not be a problem, but what happens if you are working with multi-channel audio,
longer sounds, or more parameters?

To avoid storing huge values in memory, Nyquist uses lazy evaluation. Sounds
are more like promises to deliver samples when asked, or you can think of a sound
as an object with the potential to compute samples. Samples are computed only
when they are needed. Nyquist Sounds can contain either samples or the potential
to deliver samples, or some combination.

2.1.3 Unit Generator Implementation
What is inside a Unit Generator and how do we access it? If sounds have the
potential to deliver audio samples on demand, sounds must encapsulate some in-
formation, so sounds in Nyquist are basically represented by the unit generators
that produce them. If a unit generator has inputs, the sound (represented by a unit
generator) will also have references to those inputs. Unit generators are imple-
mented as objects that contain internal state such as the phase and frequency of an
oscillator. This state is used to produce samples when the unit generator is called
upon.

Although objects are used in the implementation, programs in Nyquist do not
have access to the internal state of these objects. You can pass sounds as arguments
to other unit generator functions and you can play sounds or write sounds to files,
but you cannot access or modify these sound objects. Thus, it is more correct
to think of sounds as values rather than objects. “Object” implies state and the
possibility that the state can change. In contrast, a sound in Nyquist represents a
long stream of samples that might eventually be computed and whose values are
predetermined and immutable.

Other languages often expose unit generators as mutable objects and expose
connections between unit generators as “patches” that can be modified. In this
model, sound is computed by making a pass over the graph of interconnected unit
generators, computing either one sample or a small block of samples. By making
repeated passes over the graph, sound is incrementally computed.

While this incremental block-by-block computation sounds efficient (and it
is), this is exactly what happens with Nyquist, at least in typical applications. In
Nyquist, the play command demands a block of samples, and all the Nyquist
sounds do some computation to produce the samples, but they are “lazy” so they
only compute incrementally. In most cases, intermediate results are all computed
incrementally, used, and then freed quickly so that the total memory requirements
are modest.

3

This pdf for ICM students only - ebook
and paperback available from amazon.com

2.2 Storing Sounds or Not Storing Sounds
If you write

play sound-expression

then sound-expression can be evaluated incrementally and after playing the sam-
ples, there is no way to access them, so Nyquist is able to free the sample memory
immediately. The entire sound is never actually present in memory at once.

On the other hand, if you write:

set var = sound-expression

then initially var will just be a reference to an object with the potential to compute
samples. However, if you play var, the samples must be computed. And since
var retains a reference to the samples, they cannot be deleted. Therefore, as the
sound plays, the samples will build up in memory.

In general, you should never assign sounds to global variables because this
will prevent Nyquist from efficiently freeing the samples.

2.2.1 Functional Programming in Nyquist
Programs are expressions! As much as possible, Nyquist programs should be
constructed in terms of functions and values rather than variables and assignment
statements.

Avoid sequences of statements and use nested expressions instead. Compose
functions to get complex behaviors rather than performing sequential steps. An
example of composing a nested expression is:

f(g(x), h(x))

An exception is this: Assigning expressions to local variables can make pro-
grams easier to read by keeping expressions shorter and simpler. However, you
should only assign values to local variables once. For example, the previous
nested expression could be expanded using local variables as follows (in SAL):

;; rewrite exec f(g(x), h(x))
begin with gg, hh ;; local variables

set gg = g(x)
set hh = h(x)
exec f(gg, hh)

end

2.2.2 Eliminating Global Variables
What if you want to use the same sound twice? Wouldn’t you save it in a variable?

Generally, this is a bad idea, because, as mentioned before, storing a sound in
a variable can cause Nyquist to compute the sound and keep it in memory. There
are other technical reasons not to store sounds in variables – mainly, sounds have
an internal start time, and sounds are immutable, so if you compute a sound at
time zero and store it in a variable, then try to use it later, you will have to write
some extra code to derive a new sound at the desired starting time.

Instead of using global variables, you should generally use (global) functions.
Here is an example of something to avoid:

4

This pdf for ICM students only - ebook
and paperback available from amazon.com

;; this is NOT GOOD STYLE
set mysound = pluck(c4)
;; attempt to play mysound twice
;; this expression has problems but it might work
play seq(mysound, mysound)

Instead, you should write something like this:

;; this is GOOD STYLE
function mysound() return pluck(c4)
play seq(mysound(), mysound())

Now, mysound is a function that computes samples rather than storing them.
You could complain that now mysound will be computed twice and in fact some
randomness is involved so the second sound will not be identical to the first, but
this version is preferred because it is more memory efficient and more “func-
tional.”

2.3 Non-Sinusoidal Waveforms
Our next example will be presented in several steps. Nyquist’s osc function im-
plements the table-lookup oscillator algorithm we saw in Section ??, and produces
a sinusoid waveform by default. Our goal is to create a different sound using a
wavetable consisting of several harmonics as opposed to a simple sinusoid. We
begin with an explanation of harmonics. Then, in order to build a table, we will
use a function that adds harmonics to form a wavetable.

2.3.1 Terminology – Harmonics, etc
The shape of a wave, the waveform, is directly related to its spectral content, or the
particular frequencies, amplitudes and phases of its components. Spectral content
is the primary factor in our perception of timbre or tone color. We are familiar
with the fact that white light, when properly refracted, can be broken down into
component colors, as in the rainbow. So too with a complex sound wave, which
is the composite shape of multiple frequencies.

So far, we have made several references to sine waves, so called because they
follow the plotted shape of the mathematical sine function. A perfect sine wave
or its cosine cousin will produce a single frequency known as the fundamental.
Once any deviation is introduced into the sinus shape (but not its basic period),
other frequencies, known as harmonic partials are produced.

Partials are any additional frequencies but are not necessarily harmonic. Har-
monics or harmonic partials are integer (whole number) multiples of the funda-
mental frequency (f) (1f, 2f, 3f, 4f . . .). Overtones refers to any partials above
the fundamental.1 For convention’s sake, we usually refer to the fundamental as
partial #1. The first few harmonic partials are the fundamental frequency, octave
above, octave plus perfect fifth above, 2 octaves above, two octaves and a major
3rd, two octaves and a major fifth, as pictured in Figure 2.4 for the pitch “A.” Af-
ter the eighth partial, the pitches begin to grow ever closer and do not necessarily
correspond closely to equal-tempered pitches, as shown in the chart. In fact, even
the fifths and thirds are slightly off their equal-tempered frequencies. You may
note that the first few pitches correspond to the harmonic nodes of a violin (or any
vibrating) string.

1Overtone is not well-defined, so physicists use “partial” instead. Not all partials are harmonics,
but all harmonics are partials.

5

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 2.4: Relating harmonics to musical pitches.

2.3.2 Creating a Waveform by Summing Harmonics
In the example below, the function mkwave calls upon build-harmonic to gener-
ate a total of four harmonics with amplitudes 0.5, 0.25, 0.125, and 0.0625. These
are scaled and added (using +) to create a wavetable which is bound temporarily
to wave.

A complete Nyquist wavetable specification is a list consisting of a sound, a
pitch, and #t2, indicating a periodic waveform. The pitch gives the nominal pitch
of the sound. (This is implicit in a single cycle wave table, but a sampled sound
may have many periods of the fundamental.) Pitch is expressed in half-steps,
where middle C is 60 steps, as in MIDI pitch numbers. The list of sound, pitch,
and T is formed in the last line of mkwave: since build-harmonic computes signals
with a duration of one second, the fundamental is 1 Hz, and the hz-to-step
function converts to pitch (in units of steps) as required.

define function mkwave()
begin

with wave = 0.5 * build-harmonic(1, 2048) +
0.25 * build-harmonic(2, 2048) +
0.125 * build-harmonic(3, 2048) +
0.0625 * build-harmonic(4, 2048)

set *mytable* = list(wave, hz-to-step(1.0), #t)
end

Now that we have defined a function, the next step of this example is to build
the wavetable. The following code calls mkwave, which sets *mytable* as a side
effect:

exec mkwave()

2.3.3 Wavetable Variables
When Nyquist starts, several wavetables are created and stored in global variables
for convenience. They are: *sine-table*, *saw-table*, and *tri-table*,
implementing sinusoid, sawtooth, and triangle waves, respectively. The variable
table is initialized to *sine-table*, and it is *table* that forms the default
wave table for many Nyquist oscillator behaviors. If you want a proper, band-
limited wavetable, you should construct it yourself, but if you do not understand
this sentence and/or you do not mind a bit of aliasing, give *saw-table* and
tri-table a try.

2SAL for “true”; you can also write t, which is another way to write “true”

6

This pdf for ICM students only - ebook
and paperback available from amazon.com

t

Note that in Lisp and SAL, global variables often start and end with asterisks
(*). These are not special syntax, they just happen to be legal characters for names,
and their use is purely a convention. As an aside, it is the possibility of using
“*”, “+” and “-” in variables that forces SAL to require spaces around operators.
“a * b” is an expression using multiplication, while “a*b” is simply a variable.

2.3.4 Using Wavetables
Now you know that *table* is a global variable, and if you set it, osc will use it,
but this will change every use of osc:

exec mkwave() ;; defined above
set *table* = *mytable* ;; not recommended! read on...
play osc(c4)

In most cases, you will want to compute or select a wavetable, use it for one
sound, and then compute or select another wavetable for the next sound. Using
the global default wavetable *table* is awkward.

A much better way is to pass the wavetable directly to osc as its optional third
parameter. Here is an example to illustrate:

;; redefine mkwave to set *mytable* instead of *table*
exec mkwave() ;; run the code to build *mytable*

play osc(c4, 1.0, *mytable*) ;; use *mytable*

;; note that osc(c4, 1.0) will still generate a sine tone
;; because the default *table* is still *sine-table*

Now, you should be thinking “wait a minute, you said to avoid setting global
variables to sounds, and now you are doing just that with these wavetable exam-
ples. What a hypocrite!” Wavetables are a bit special because they are

• typically short so they do not claim much memory,

• typically used many times, so there can be significant savings by computing
them once and saving them,

• not used directly as sounds but only as parameters to oscillators.

You do not have to save wavetables in variables, but it is common practice, in spite
of the general advice to keep sounds out of global variables.

2.4 Piece-wise Linear Functions: pwl
It is often convenient to construct signals in Nyquist using a list of (time, value)
breakpoints which are linearly interpolated to form a smooth signal. The pwl
function takes a list of parameters which denote (time, value) pairs. There is an
implicit initial (time, value) pair of (0, 0), and an implicit final value of 0. There
should always be an odd number of parameters, since the final value (but not the
final time) is implicit. Thus, the general form of pwl looks like:

pwl(t1, v1, t2, v2, . . . , tn)

and this results in a signal as shown in Figure 2.5.
Here are some examples of pwl:

7

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 2.5: Piece-wise Linear Functions.

; symmetric rise to 10 (at time 1) and fall back to 0 (at time 2):
;
pwl(1, 10, 2)

; a square pulse of height 10 and duration 5.
; Note that the first pair (0, 10) overrides the default initial
; point of (0, 0). Also, there are two points specified at time 5:
; (5, 10) and (5, 0). (The last 0 is implicit). The conflict is
; automatically resolved by pushing the (5, 10) breakpoint back to
; the previous sample, so the actual time will be 5 - 1/sr, where
; sr is the sample rate.
;
pwl(0, 10, 5, 10, 5)

; a constant function with the value zero over the time interval
; 0 to 3.5. This is a very degenerate form of pwl. Recall that there
; is an implicit initial point at (0, 0) and a final implicit value of
; 0, so this is really specifying two breakpoints: (0, 0) and (3.5, 0):
;
pwl(3.5)

; a linear ramp from 0 to 10 and duration 1.
; Note the ramp returns to zero at time 1. As with the square pulse
; above, the breakpoint (1, 10) is pushed back to the previous
; sample.
;
pwl(1, 10, 1)

; If you really want a linear ramp to reach its final value at the
; specified time, you need to make a signal that is one sample longer.
; The RAMP function does this:
;
ramp(10) ; ramp from 0 to 10 with duration 1 + one sample
; period. RAMP is based on PWL; it is defined in nyquist.lsp.

2.4.1 Variants of pwl
Sometimes, you want a signal that does not start at zero or end at zero. There is
also the option of interpolating between points with exponential curves instead of
linear interpolation. There is also the option of specifying time intervals rather
than absolute times. These options lead to many variants, for example:

pwlv(v0, t1, v1, t2, v2, . . . , tn, vn) – “v” for “value first” is used
for signals with non-zero starting and ending points

pwev(v1, t2, v2, . . . , tn, vn) – exponential interpolation, vi > 0
pwlr(i1, v1, i2, v2, . . . , in) – relative intervals rather than absolute

times

See the Nyquist Reference Manual for more variants and combinations.

8

This pdf for ICM students only - ebook
and paperback available from amazon.com

2.4.2 The Envelope Function: env
Envelopes created by env are a special case of the more general piece-wise linear
functions created by pwl. The form of env is

env(t1, t2, t4, L1, L2, L3, dur)

(duration given by dur is optional). One advantage of env over pwl is that env

Figure 2.6: Envelope function env.

allows you to give fixed attack and decay times that do not stretch with duration.
In contrast, the default behavior for pwl is to stretch each segment in proportion
when the duration changes. (We have not really discussed duration in Nyquist,
but we will get there later.)

2.5 Basic Wavetable Synthesis
Now, you have seen examples of using the oscillator function (or unit generator)
osc to make tones and various functions (unit generators) to make envelopes or
smooth control signals. All we need to do is multiply them together to get tones
with smooth onsets and decays. Here is an example function to play a note:

; env-note produces an enveloped note. The duration
; defaults to 1.0, but stretch can be used to change the duration.
; Uses mkwave, second version defined above, to create *mytable*.

exec mkwave() ;; run the code to build *mytable*

function env-note(p)
return osc(p, 1.0, *mytable*) *

env(0.05, 0.1, 0.5, 1.0, 0.5, 0.4)

; try it out:
;
play env-note(c4)

This is a basic synthesis algorithm called wavetable synthesis. The advantages
are:

• simplicity – one oscillator, one envelope,

• efficiency – oscillator samples are generated by fast table lookup and (usu-
ally) linear interpolation,

• direct control – you can specify the desired envelope and pitch

Disadvantages are:

9

This pdf for ICM students only - ebook
and paperback available from amazon.com

• the spectrum (strength of harmonics) does not change with pitch or time as
in most acoustic instruments.

Often filters are added to change the spectrum over time, and we will see many
other synthesis algorithms and variations of wavetable synthesis to overcome this
problem.

2.6 Introduction to Scores
So far, we have seen how simple functions can be used in Nyquist to create in-
dividual sound events. We prefer this term to notes. While a sound event might
be described as a note, the term note usually implies a single musical tone with a
well-defined pitch. A note is conventionally described by:

• pitch – from low (bass) to high,

• starting time (notes begin and end),

• duration – how long is the note,

• loudness – sometimes called dynamics,

• timbre – everything else such as the instrument or sound quality, softness,
harshness, noise, vowel sound, etc.)

while sound event captures a much broader range of possible sound). A sound
event can have:

• pitch, but may be unpitched noise or combinations,

• time – sound events begin and end,

• duration – how long is the event,

• loudness – also known as dynamics,

• potentially many evolving qualities.

Now, we consider how to organize sound events in time using scores in Nyquist.
What is a score? Authors write books. Composers write scores. Figure 2.7 il-
lustrates a conventional score. A score is basically a graphical display of music
intended for conductors and performers. Usually, scores display a set of notes
including their pitches, timing, instruments, and dynamics. In computer music,
we define score to include computer readable representations of sets of notes or
sound events.

2.6.1 Terminology – Pitch
Musical scales are built from two-sizes of pitch intervals: whole steps and half
steps, where a whole step represents about a 12 percent change in frequency, and
a half step is about a 6 percent change. A whole step is exactly two half steps.
Therefore the basic unit in Western music is the half step, but this is a bit wordy,
so in Nyquist, we call these steps.3

3Physicists have the unit Hertz to denote cycles per second. Wouldn’t it be great if we had a
special name to denote half-steps? How about the Bach since J. S. Bach’s Well-Tempered Clavier
is a landmark in the development of the fixed-size half step, or the Schoenberg, honoring Arnold’s
development of 12-tone music. Wouldn’t it be cool to say 440 Hertz is 69 Bachs? Or to argue whether
it’s “Bach” or “Bachs?” But I digress

10

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 2.7: A score written by Mozart.

Since Western music more-or-less uses integer numbers of half-steps for pitches,
we represent pitches with integers. Middle C (ISO C4) is arbitrarily represented
by 60. Nyquist pre-defines a number of convenient variables to represent pitches
symbolically. We have c4 = 60, cs4 (C# or C-sharp) = 61, cf4 (Cb or C-flat)
= 59, b3 (B natural, third octave) = 59, bs3 (B# or B-sharp, 3rd octave) = 60,
etc. Note: In Nyquist, we can use non-integers to denote detuned or microtonal
pitches: 60.5 is a quarter step above 60 (C4).

Some other useful facts: Steps are logarithms of frequency, and frequency
doubles every 12 steps. Doubling frequency (or halving) is called an interval of
an octave.

2.6.2 Lists
Scores are built on lists, so let’s learn about lists.

Lists in Nyquist

Lists in Nyquist are represented as standard singly-linked lists. Every element cell
in the list contains a link to the value and a link to the next element. The last
element links to nil, which can be viewed as pointing to an empty list. Nyquist
uses dynamic typing so that lists can contain any types of elements or any mixture
of types; types are not explicitly declared before they are used. Also, a list can
have nested lists within it, which means you can make any binary tree structure
through arbitrary nesting of lists.

Notation

Although we can manipulate pointers directly to construct lists, this is frowned
upon. Instead, we simply write expressions for lists. In SAL, we use curly brace
notations for literal lists, e.g. {a b c}. Note that the three elements here are
literal symbols, not variables (no evaluation takes place, so these symbols denote

11

This pdf for ICM students only - ebook
and paperback available from amazon.com

Figure 2.8: A list in Nyquist.

themselves, not the values of variables named by the symbols). To construct a list
from variables, we call the list function with an arbitrary number of parameters,
which are the list elements, e.g. list(a, b, c). These parameters are evaluated
as expressions in the normal way and the values of these expressions become list
elements.

Literals, Variables, Quoting, Cons

Consider the following:

set a = 1, b = 2, c = 3
print {a b c}

This prints: {a b c}. Why? Remember that the brace notation {} does not
evaluate anything, so in this case, a list of the symbols a, b and c is formed. To
make a list of the values of a, b and c, use list, which evaluates its arguments:

print list(a, b, c)

This prints: {1 2 3}.
What about numbers? Consider

print list(1, 2, 3)

This prints: {1 2 3}. Why? Because numbers are evaluated immediately by
the Nyquist (SAL or Lisp) interpreter as the numbers are read. They become
either integers (known as type FIXNUM) or floating point numbers (known as
type FLONUM). When a number is used as an expression (as in this example) or
a subexpression, the number evaluates to itself.

What if you want to use list to construct a list of symbols?

print list(quote(a), quote(b), quote(c))

This prints: {a b c}. The quote() form can enclose any expression, but
typically just a symbol. The quote() form returns the symbol without evaluation.

If you want to add an element to a list, there is a special function, cons:

print cons(1, {b})

This prints: {1 b}. Study this carefully; the first argument becomes the first
element of a new list. The elements of the second argument (a list) form the
remaining elements of the new list.

In contrast, here is what happens with list:

print list(1, {b c d})

This prints: {1 {b c d}}. Study this carefully too; the first argument be-
comes the first element of a new list. The second argument becomes the second
element of the new list, so the new list has two elements.

12

This pdf for ICM students only - ebook
and paperback available from amazon.com

2.7 Scores
In Nyquist, scores are represented by lists of data. The form of a Nyquist score is
the following:

{ sound-event-1
sound-event-2
...
sound-event-n }

where a sound event is also a list consisting of the event time, duration, and
an expression that can be evaluated to compute the event. The expression, when
evaluated, must return a sound:

{ {time-1 dur-1 expression-1}
{time-2 dur-2 expression-2}
...
{time-n dur-n expression-n} }

Each expression consists of a function name (sometimes called the instrument
and a list of keyword-value style parameters:

{ {time-1 dur-1 {instrument-1 pitch: 60}}
{time-2 dur-2 {instrument-2 pitch: 62}}
...
{time-n dur-n {instrument-n pitch: 62 vel: 100}} }

Here is an example score:

{ {0 1 {note pitch: 60 vel: 100}}
{1 1 {note pitch: 62 vel: 110}}
{2 1 {note pitch: 64 vel: 120}} }

Important things to note (pardon the pun) are:

• Scores are data. You can compute scores using by writing code and using
the list construction functions from the previous section (and see the Nyquist
Reference Manual for many more).

• Expressions in scores are lists, not SAL expressions. The first element of
the list is the function to call. The remaining elements form the parameter
list.

• Expressions use keyword-style parameters, never positional parameters. The
rationale is that keywords label the values, allowing us to pass the same
score data to different instruments, which may implement some keywords,
ignore others, and provide default values for missing keywords.

• keyword parameters also allow us to treat scores as data. For example,
Nyquist has a built-in function to find all the pitch: parameters and trans-
pose them. If positional parameters were used, the transpose function would
have to have information about each instrument function to find the pitch
values (if any). Keyword parameters are more self-defining.

• In SAL, keyword parameters end with a colon, e.g. pitch:. In Lisp, key-
word parameters begin with a colon, e.g. :pitch. The SAL compiler trans-
lates pitch: to :pitch, even when pitch: is used between braces. How-
ever, when you print a list with keywords, there is no reverse-translation, so
print {pitch: 40} will display {:pitch 40}!

13

This pdf for ICM students only - ebook
and paperback available from amazon.com

2.7.1 The score-begin-end “instrument” Event
Sometimes it is convenient to give the entire score a begin time and an end time
because the logical time span of a score may include some silence. This informa-
tion can be useful when splicing scores together. To indicate start and end times
of the score, insert a sound event of the form

{0 0 {score-begin-end 1.2 6}}

In this case, the score occupies the time period from 1.2 to 6 seconds.
For example, if we want the previous score, which nominally ends at time 3 to

contain an extra second of silence at the end, we can specify the time span of the
score is from 0 to 4 as follows:

{ {0 0 {score-begin-end 0 4}}
{0 1 {note pitch: 60 vel: 100}}
{1 1 {note pitch: 62 vel: 110}}
{2 1 {note pitch: 64 vel: 120}} }

2.7.2 Playing a Score
To interpret a score and produce a sound, we use the timed-seq() function. The
following plays the previous score:

set myscore = {
{0 0 {score-begin-end 0 4}}
{0 1 {note pitch: 60 vel: 100}}
{1 1 {note pitch: 62 vel: 110}}
{2 1 {note pitch: 64 vel: 120}} }

play timed-seq(myscore)

2.7.3 Making an Instrument
Now you know all about how Nyquist scores are represented and interpreted. The
previous example will work because note is a built-in function in Nyquist that
uses a built-in piano synthesizer. But it might be helpful to see a custom instru-
ment definition, making the connection between scores and the wavetable synthe-
sis examples we saw earlier. In the next example, we define a new instrument
function that calls on our existing env-note instrument. The reason for making
a new function to be our instrument is we want to use keyword parameters. Then,
we modify myscore to use myinstr. (See Algorithm 2.1.)

Note that in myinstr we scale the amplitude of the output by
vel-to-linear(vel) to get some loudness control. “vel” is short for “velocity”
which refers to the velocity of piano keys – higher numbers mean faster which
means louder. The “vel” scale is nominally 1 to 127 (as in the MIDI standard)
and vel-to-linear() converts this to a scale factor. We will learn more about
amplitude later.

2.7.4 Making a Score
Besides giving complete control over instruments, parameters and timing, the re-
ally exciting thing about scores is the possibility of computing them rather than
writing them by hand, which is obviously very tedious. In the next example, we
use list functions to embed data into a score and play it. Our goal is to create a
sequence of 32 notes with pitches taken randomly from a list and velocities that
increase to the mid-point, then decrease to the end. (Later, we will learn some

14

This pdf for ICM students only - ebook
and paperback available from amazon.com

variable *mytable* ;; declaration avoids parser warnings

function mkwave()
begin

set *mytable* = 0.5 * build-harmonic(1, 2048) +
0.25 * build-harmonic(2, 2048) +
0.125 * build-harmonic(3, 2048) +
0.0625 * build-harmonic(4, 2048)

set *mytable* = list(*mytable*, hz-to-step(1.0), #t)
end

exec mkwave()

function env-note(p)
return osc(p, 1.0, *mytable*) *

env(0.05, 0.1, 0.5, 1.0, 0.5, 0.4)

;; define the "instrument" myinstr that uses keyword parameters
;; this is just a stub, env-note() does most of the work...
function myinstr(pitch: 60, vel: 100)

return env-note(pitch) * vel-to-linear(vel)

set myscore = {
{0 0 {score-begin-end 0 4}}
{0 1 {myinstr pitch: 60 vel: 50}}
{1 1 {myinstr pitch: 62 vel: 70}}
{2 1 {myinstr pitch: 64 vel: 120}} }

play timed-seq(myscore)

Algorithm 2.1: Defining an instrument, using it in a Nyquist score, and playing
the score.

more elegant ways to do this, but for now, we will take the “brute force” approach
of constructing the score from list nodes.)

Let us begin by initializing an empty list and writing a loop that iterates 32
times. Note that we use a second for expression to generate a new start time for
each note:

set pitches = {bf3 c4 cs4 ds4 fs4 g5}
set myscore = nil ;; an empty list
loop

for i from 0 below 32 ; iterate 32 times
for start from 0 by 0.25 ; start times are every 0.25 s
... make and append a note here ...

end

Now, to create each sound event, we can use nested calls to list:

set pitch = nth(random(length(pitches)), pitches)
set vel = 40 + 5 * #?(i < 16, i, 32 - i)
set event = list(start, 1.5, list(quote(note),

keyword(pitch), pitch, keyword(vel), vel))

A number of details are illustrated here: The nth function returns the (zero-based)
nth element of a list. To compute vel, a conditional expression (with #?) is used
to create an increasing sequence up to i = 16, then a decreasing function be-
yond that. The duration of each event (note) is 1.5 seconds. A typical event is
{4 1.5 {note pitch: c4 vel: 84}. You might be tempted to write
list(start, 1.5, list(note, pitch:, pitch, vel:, vel)), but
this will fail for two reasons: First, note is a variable reference, but we want the
symbol itself. Write quote(note) to denote the symbol note. Secondly, SAL
interprets pitch: to be a keyword, but we also want pitch: as a symbol. Writing

15

This pdf for ICM students only - ebook
and paperback available from amazon.com

quote(pitch:) will not work because quote does not take keyword parameters.
Instead, you can write keyword(pitch) to construct a keyword symbol. Unlike
the {...} notation, list is a function that evaluates each parameter expression,
and expressions must be separated by commas.

We need to build a list from individual sound events. SAL has an “insert-
at-end” operator, so set myscore &= event will do the job. Finally, we can
put this all together into a program to compute myscore. The program is shown
below. In this example, one additional trick is used: As explained earlier, Lisp
keywords are denoted by an initial colon, and SAL’s pitch: is translated to Lisp’s
:pitch, so our goal is really to insert the symbol :pitch into our list. Lisp
convention is that symbols that begin with colon are automatically initialized to
their own symbol name, as if LISP automatically executes something like

set :pitch = keyword(pitch)

These Lisp keywords are accessible in SAL, so instead of writing the wordy ex-
pression keyword(pitch) to construct a keyword, we can simply write :pitch
as a variable and it will be evaluated to its own name, the symbol :pitch! Com-
pare the code above, using keyword(pitch) and keyword(vel) to the code
below, using :pitch and :vel.

For more detailed examples on list manipulation and SAL programming in
general, see Chapter 3 “Introduction to SAL” of Algorithmic Composition: A
Guide to Composing Music with Nyquist [?].

set pitches = {bf4 c5 cs5 ds5 fs5 g5}
set myscore = nil ; an empty list
loop with pitch, vel, event

for i from 0 below 32 ; iterate 32 times
for start from 0 by 0.25 ; start times are every 0.25 s
set pitch = nth(random(length(pitches)), pitches)
set vel = 10 + 6 * #?(i < 16, i, 32 - i)
set event = list(start, 1.5, list(quote(note),

:pitch, pitch, :vel, vel))
set myscore &= event

end
play timed-seq(myscore)

Algorithm 2.2: Creating and playing a Nyquist score using list functions.

2.8 Summary
Now you should know how to build a simple wavetable instrument with the wave-
form consisting of any set of harmonics and with an arbitrary envelope controlled
by pwl or env. You can also write or compute scores containing many instances
of your instrument function organized in time, and you can synthesize the score
using timed-seq. You might experiment by creating different waveforms, differ-
ent envelopes, using non-integer pitches for microtuning, or notes overlapping in
time to create chords or clusters.

16

This pdf for ICM students only - ebook
and paperback available from amazon.com

	Basics of Synthesis
	Unit Generators
	Some Basic Unit Generators
	Evaluation
	Unit Generator Implementation

	Storing Sounds or Not Storing Sounds
	Functional Programming in Nyquist
	Eliminating Global Variables

	Non-Sinusoidal Waveforms
	Terminology – Harmonics, etc
	Creating a Waveform by Summing Harmonics
	Wavetable Variables
	Using Wavetables

	Piece-wise Linear Functions: pwl
	Variants of pwl
	The Envelope Function: env

	Basic Wavetable Synthesis
	Introduction to Scores
	Terminology – Pitch
	Lists

	Scores
	The score-begin-end ``instrument'' Event
	Playing a Score
	Making an Instrument
	Making a Score

	Summary

