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Chapter 1

Introduction
Topics Discussed: Sound, Nyquist, SAL, Lisp and Control Constructs

Computers in all forms – desktops, laptops, mobile phones – are used to store
and play music. Perhaps less obvious is the fact that music is now recorded and
edited almost exclusively with computers, and computers are also used to gener-
ate sounds either by manipulating short audio clips called samples or by direct
computation. In the late 1950s, engineers began to turn the theory of sampling
into practice, turning sound into bits and bytes and then back into sound. These
analog-to-digital converters, capable of turning one second’s worth of sound into
thousands of numbers made it possible to transform the acoustic waves that we
hear as sound into long sequences of numbers, which were then stored in com-
puter memories. The numbers could then be turned back into the original sound.
The ability to simply record a sound had been known for quite some time. The
major advance of digital representations of sound was that now sound could be
manipulated very easily, just as a chunk of data. Advantages of employing com-
puter music and digital audio are:

1. There are no limits to the range of sounds that a computer can help explore.
In principle, any sound can be represented digitally, and therefore any sound
can be created.

2. Computers bring precision. The process to compute or change a sound
can be repeated exactly, and small incremental changes can be specified in
detail. Computers facilitate microscopic changes in sounds enabling us to
produce desirable sounds.

3. Computation implies automation. Computers can take over repetitive tasks.
Decisions about music making can be made at different levels, from the
highest level of composition, form and structure, to the minutest detail of an
individual sound. Unlike with conventional music, we can use automation
to hear the results of these decisions quickly and we can refine computer
programs accordingly.

4. Computers can blur the lines between the traditional roles of the composer
and the performer and even the audience. We can build interactive systems
where, thanks to automation, composition is taking place in real time.

The creative potential for musical composition and sound generation empowered
a revolution in the world of music. That revolution in the world of electroacoustic
music engendered a wonderful synthesis of music, mathematics and computing.
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1.1 Theory and Practice
This book is intended for a course that has two main components: the technology
of computer music and making music with computers. The technology of com-
puter music includes theory, which covers topics such as digital audio and digital
signal processing, software design and languages, data structures and representa-
tion. All of these form a conceptual framework that you need to understand the
field. The second aspect of the technology of computer music is putting these
concepts into practice to make them more concrete and practical. We also make
music. Making music also has a theoretical side, mainly listening to music and
discussing what we find in the music. Of course, there is also a practical side of
making music, consisting in this book mostly of writing programs in Nyquist, a
powerful composition and sound synthesis language.

A composer is expected to have understanding of acoustics and psychoacous-
tics. The physics of sound (acoustics) is often confused with the way in which we
perceive it (psychoacoustics). We will get to these topics later. In the next section,
we discuss sound’s physical characteristics and common measurements. Follow-
ing that, we change topics and give a brief introduction to the Nyquist language.

1.1.1 Warning! Programming!
This is not an introduction to programming! If you do not already know how to
program in some language such as Python or Java, you will not understand much
of the content in this book. If you already have some programming experience,
you should be able to pick up Nyquist quickly with the introduction in this and
the next chapter. If you find the pace is too quick, I recommend Algorithmic Com-
position: A Guide to Composing Music with Nyquist [?], which was written for
ınon-programmers and introduces Nyquist at a slower pace. As the title implies,
that book also covers more algorithmic composition techniques than this one.

You should also install Nyquist, the programming language, from Source-
Forge (sourceforge.net/projects/nyquist/). Once installed, find the Nyquist Refer-
ence Manual. Whenever you have questions about Nyquist, look in the reference
manual for details and more examples.

1.2 Fundamentals of Computer Sound
All musicians work with sound in some way, but many have little understanding
of its properties. Computer musicians can benefit in myriad ways from an under-
standing of the mechanisms of sound, its objective measurements and the more
subjective area of its perception. This understanding is crucial to the proper use of
common studio equipment and music software, and novel compositional strategies
can be derived from exploiting much of the information contained in this section.

1.2.1 What is Sound?
Sound is a complex phenomenon involving physics and perception. Perhaps the
simplest way to explain it is to say that sound involves at least three things:

1. something moves,

2. something transmits the results of that movement,

3. something (or someone) hears the results of that movement (though this is
philosophically debatable).
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All things that make sound move, and in some very metaphysical sense, all
things that move (if they don’t move too slowly or too quickly) make sound.
As things move, they push and pull at the surrounding air (or water or what-
ever medium they occupy), causing pressure variations (compressions and rar-
efactions). Those pressure variations, or sound waves, are what we hear as sound.
(See Figure 1.1.)

Figure 1.1: Illustration of a wave and the corresponding pressure variations in the
air.

Sound is produced by a rapid variation in the average density or pressure of air
molecules above and below the current atmospheric pressure. We perceive sound
as these pressure fluctuations cause our eardrums to vibrate. When discussing
sound, these usually minute changes in atmospheric pressure are referred to as
sound pressure and the fluctuations in pressure as sound waves. Sound waves are
produced by a vibrating body, be it an oboe reed, loudspeaker cone or jet engine.
The vibrating sound source disturbs surrounding air molecules, causing them to
bounce off each other with a force proportional to the disturbance.

The speed at which sound propagates (or travels from its source) is directly
influenced by both the medium through which it travels and the factors affecting
the medium, such as altitude, humidity and temperature for gases like air. There is
no sound in the vacuum of space because there are too few molecules to propagate
a wave. The approximate speed of sound at 20° Celsius (68° Fahrenheit) is 1128
feet per second (f/s).

It is important to note that the speed of sound in air is determined by the con-
ditions of the air itself (e.g. humidity, temperature, altitude). It is not dependent
upon the sound’s amplitude, frequency or wavelength.

Pressure variations travel through air as waves. Sound waves are often charac-
terized by four basic qualities, though many more are related: frequency, ampli-
tude, wave shape and phase.1 Some sound waves are periodic, in that the change
from equilibrium (average atmospheric pressure) to maximum compression to
maximum rarefaction back to equilibrium is repetitive. The “round trip” back
to the starting point just described is called a cycle or period.

The number of cycles per unit of time is called the frequency. (See Figure
1.2.) For convenience, frequency is measured in cycles per second (cps) or the
interchangeable Hertz (Hz) (60 cps = 60 Hz), named after the 19th C. physicist.
1000 Hz is often referred to as 1 kHz (kilohertz) or simply “1k” in studio parlance.

1It could be argued that phase is not a characteristic of a single wave, but only as a comparison
between two or more waves.
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Figure 1.2: Illustration of how waveform changes with the change in frequency.

The range of human hearing in the young is approximately 20 Hz to 20 kHz—the
higher number tends to decrease with age (as do many other things). It may be
quite normal for a 60-year-old to hear a maximum of 16,000 Hz. Frequencies
above and below the range of human hearing are also commonly used in com-
puter music studios.

Amplitude is the objective measurement of the degree of change (positive or
negative) in atmospheric pressure (the compression and rarefaction of air molecules)
caused by sound waves. Sounds with greater amplitude will produce greater
changes in atmospheric pressure from high pressure to low pressure to the am-
bient pressure present before sound was produced (equilibrium). Humans can
hear atmospheric pressure fluctuations of as little as a few billionths of an atmo-
sphere (the ambient pressure), and this amplitude is called the threshold of hear-
ing. On the other end of the human perception spectrum, a super-loud sound near
the threshold of pain may be 100,000 times the pressure amplitude of the threshold
of hearing, yet only a 0.03% change at your ear drum in the actual atmospheric
pressure. We hear amplitude variations over about 5 orders of magnitude from
threshold to pain.

1.2.2 Analog Sound
Sound itself is a continuous wave; it is an analog signal. (See Figure 1.3.) When
we record audio, we start with continuous vibrations that are analogous to the
original sound waves. Capturing this continuous wave in its entirety requires an
analog recording system; what the microphone receives is transformed continu-
ously into a groove of a vinyl disk or magnetism of a tape recorder. Analog can be
said to be the true representation of the sound at the moment it was recorded. The
analog waveform is nice and smooth, while the digital version is kind of chunky.
This “chunkiness” is called quantization. Does this really matter? Keep reading...

1.2.3 Digital Audio Representation
Sounds from the real world can be recorded and digitized using an analog-to-
digital converter (ADC). As in Figure 1.4, the circuit takes a sample of the instan-
taneous amplitude (not frequency) of the analog waveform. Alternatively, digital
synthesis software can also create samples by modeling and sampling mathemati-
cal functions or other forms of calculation. A sample in either case is defined as a
measurement of the instantaneous amplitude of a real or artificial signal. Frequen-
cies will be recreated later by playing back the sequential sample amplitudes at a
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Figure 1.3: Before audio recording became digital, sounds were “carved” into
vinyl records or written to tape as magnetic waveforms. Left image shows wiggles
in vinyl record grooves and the right image shows a typical tape used to store audio
data.

specified rate. It is important to remember that frequency, phase, waveshape, etc.
are not recorded in each discrete sample measurement, but will be reconstructed
during the playback of the stored sequential amplitudes.

Figure 1.4: An analog waveform is converted by an ADC to digital form. Conver-
sion back to analog is shown in two steps. First, each digital sample is converted
to a voltage. Second, the signal is smoothed by a filter. (Sometimes, the filter step
is assumed and the two-step process is referred to as DAC).

5

This pdf for ICM students only - ebook
and paperback available from amazon.com



Samples are taken at a regular time interval. The rate of sample measurement
is called the sampling rate (or sampling frequency). The sampling rate is respon-
sible for the frequency response of the digitized sound.

To convert the digital audio into the analog format, we use digital-to-analog
converters. A digital-to-analog converter, or DAC, is an electronic device that
converts a digital code to an analog signal such as a voltage, current, or electric
charge. Signals can easily be stored and transmitted in digital form; a DAC is used
for the signal to be recognized by human senses or non-digital systems.

1.2.4 Clipping
The input of a digital-to-analog converter is an integer, which implies there are
minimum and maximum values for samples. To make calculations simpler and
to avoid losing precision, we often use floating point numbers to represent and
process samples.2 For example, we might form the sum of many audio channels,
exceeding the maximum sample value, but before converting to analog, we can
bring the sum into range with a suitable scale factor. In this example, integer
arithmetic would overflow, but floating point numbers would not.

By using floating point representations for samples, we avoid many problems
of precision and numerical overflow, but we still face problems when we try to
convert samples to sound because there are no floating-point converters, and even
if there were, analog circuits and amplifiers have limits. In practice, sample values
are limited or “clipped” to a fixed range. This results in a particularly harsh form
of distortion called clipping. Clipping occurs when we write too large samples to
audio files or when we directly write too large samples to a DAC. (Clipping can
also occur in audio recording when the input signal is too high for analog circuitry
or outside the range of an analog-to-digital converter.)

There is no general remedy for clipping. Once a signal has been clipped, the
original cannot be recovered. There are various ways to soften the distortion,
but the only “respectable” fix is to adjust amplitudes by scaling, mixing, or even
moving the microphone3. Figure 1.5 shows a waveform with clipping.

Figure 1.5: A sinusoid with increasing/decreasing volume showing audio clipping
at the center of the graph.

2A floating point number is a digital representation that uses the idea of scientific notation, e.g.
0.1234×107, by storing a sign, a fraction, and an exponent, giving a much larger range of values than
an integer of the same size.

3“Louis Armstrong was famously placed 20 feet away for his solos.” – Clive Thompson in
www.smithsonianmag.com/arts-culture/phonograph-changed-music-for forever-180957677/
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1.2.5 The Table-Lookup Oscillator
Although we still have a lot to learn about digital audio, it is useful to look at a very
concrete example of how we can use computers to synthesize audio in addition to
simply recording and playing it back. One of the simplest synthesis algorithms
is the table-lookup oscillator. The goal is to create a periodic, repeating signal.
Ideally, we should have control over the amplitude and frequency, because scaling
the amplitude makes the sound quieter or louder, and making the frequency higher
makes the pitch higher.

To get started, consider Algorithm 1.1, which simply outputs samples sequen-
tially and repeatedly from a table that stores one period of the repeating signal.

// create a table with one period of the signal:
table = [0, 0.3, 0.6, 0.9, 0.6, 0.3,

0, -0.3, -0.4, -0.9, -0.6, -0.3]
// output audio samples:
repeat 10000 times:

for each element of table:
write(element)

Algorithm 1.1: Simple table-lookup oscillator

This will produce 120,000 samples, or about 3 seconds of audio if the sample
rate is 44,100 samples per second. The frequency (rate of repetition in the signal)
will be 44,100/12 = 3675, which is near the top note of the piano. We want very
fine control over frequency, so this simple algorithm with integer-length repeating
periods is not adequate. Instead, we need to use some kind of interpolation to
allow for fractional periods. This approach is shown in Algorithm 1.2.

// create a table with one period of the signal:
table = [0, 0.3, 0.6, 0.9, 0.6, 0.3,

0, -0.3, -0.4, -0.9, -0.6, -0.3]
// make a variable to keep track of phase:
phase = 0.0
// increment phase by this to get 440 Hz:
phase_incr = 440 * len(table) / 44100.0
// output audio samples:
repeat 44100 * 10 times: // 10 seconds of audio

i1 = floor(phase) // integer part of phase, first sample index
frac = phase - i1 // fractional part of phase
i2 = (i1 + 1) mod len(table) // index of next sample in table
// linearly interpolate between two samples in the table:
y = (1 - frac) * table[i1] + frac * table[i2]
write(y * amplitude)
// increment phase and wrap around when we reach the end of the table
phase = (phase + phase_incr) mod len(table)

Algorithm 1.2: Interpolating table-lookup oscillator

This code example is considerably longer than the first one. It uses the variable
phase to keep track of how much of the waveform period we have output so
far. After each sample is output, phase is incremented by phase_incr, which
is initialized so that phase will reach the table length and wrap around to zero
(using the mod operator) 440 times per second. Since phase is now fractional,
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we cannot simply write table[phase] to look up the value of the waveform at
location phase. Instead, we read two adjacent values from the table and form
a weighted sum based on the fractional part (frac) of phase. Even though the
samples may not exactly repeat due to interpolation, we can control the overall
frequency (or repetition rate) at which we sweep through the table very precisely.

In addition, this version of the code multiplies the computed sample (y) by
amplitude. This scale factor gives us control over the overall amplitude, which
is related to the loudness of the resulting sound.

In practice, we would normally use a much larger table, e.g. 2048 elements,
and we would use a smoother waveform. (We will talk about why digital audio
waveforms have to be smooth later.) It is common to use this technique to generate
sinusoids. Of course, you could just call sin(phase) for every sample, but in most
cases, pre-computing values of the sin function and saving them in a table, then
reading the samples from memory, is much faster than computing the sin function
once per sample.

Instead of synthesizing sinusoids, we can also synthesize complex waveforms
such as triangle, sawtooth, and square waves of analog synthesizers, or waveforms
obtained from acoustic instruments or human voices.

We will learn about many other synthesis algorithms and techniques, but the
table-lookup oscillator is a computationally efficient method to produce sinusoids
and more complex periodic signals. Besides being efficient, this method offers
direct control of amplitude and frequency, which are very important control pa-
rameters for making music. The main drawback of table-lookup oscillators is
that the waveform or wave shape is fixed, whereas most musical tones vary over
time and with amplitude and frequency. Later, we will see alternative approaches
to sound synthesis and also learn about filters, which can be used to alter wave
shapes.

1.3 Nyquist, SAL, Lisp
Nyquist4 is a language for sound synthesis and music composition. Unlike score
languages that tend to deal only with events, or signal processing languages that
tend to deal only with signals and synthesis, Nyquist handles both in a single
integrated system. Nyquist is also flexible and easy to use5 because it is based on
an interactive Lisp interpreter (XLisp).

The NyquistIDE program (Figure 1.6) combines many helpful functions and
interfaces to help you get the most out of Nyquist. NyquistIDE is implemented in
Java, and you will need the Java runtime system or development system installed
on your computer to use NyquistIDE. The best way to learn about NyquistIDE is
to just use it. NyquistIDE helps you by providing a Lisp and SAL editor, hints
for command completion and function parameters, some graphical interfaces for
editing envelopes and graphical equalizers, and a panel of buttons for common
operations.

1.3.1 SAL
Nyquist is based on the Lisp language. Many users found Lisp’s syntax un-
familiar, and eventually Nyquist was extended with support for SAL, which is
similar in semantics to Lisp, but similar in syntax to languages such as Python

4The Nyquist Reference Manual is included as PDF and HTML in the Nyquist download; also
available online: www.cs.cmu.edu/~rbd/doc/nyquist

5All language designers tell you this. Don’t believe any of them.
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Figure 1.6: NyquistIDE System Architecture

and Javascript. The NyquistIDE supports two modes, Lisp and SAL. SAL mode
means that Nyquist reads and evaluates SAL commands rather than Lisp. The
SAL mode prompt is “SAL> ” while the Lisp mode prompt is “> ”. When Nyquist
starts, it normally enters SAL mode automatically, but certain errors may exit SAL
mode. You can reenter SAL mode by typing the Lisp expression (sal) or finding
the button labeled SAL in the IDE.

In SAL mode, you type commands in the SAL programming language. Nyquist
reads the commands, compiles them into Lisp, and evaluates the commands. Some
examples of SAL commands are the following:

• print expression – evaluate and expression and print the result.

• exec expression – evaluate expression but do not print the result.

• play expression – evaluate an expression and play the result, which must
be a sound.

• set var = expression – set a variable.

1.4 Using SAL In the IDE
It is important to learn to use the NyquistIDE program, which provides an inter-
face for editing and running Nyquist programs. The NyquistIDE is discussed in
the Nyquist Reference Manual. You should take time to learn:

• How to switch to SAL mode. In particular, you can “pop” out to the top
level of Nyquist by clicking the “Top” button; then, you can enter SAL
mode by clicking the “SAL” button.

• How to run a SAL command, e.g. type print "hello world" in the input
window at the upper left.

• How to create a new file. In particular, you should normally save a new
empty file to a file named something.sal in order to tell the editor this is a
SAL file and thereby invoke the SAL syntax coloring, indentation support,
etc.

• How to execute a file by using the Load menu item or keyboard shortcut.
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1.5 Examples
This would be a good time to install and run the NyquistIDE. You can find Nyquist
downloads on sourceforge.net/projects/nyquist, and “readme” files contain instal-
lation guidelines.

The program named NyquistIDE is an “integrated development environment”
for Nyquist. When you run NyquistIDE, it starts the Nyquist program and dis-
plays all Nyquist output in a window. NyquistIDE helps you by providing a Lisp
and SAL editor, hints for command completion and function parameters, some
graphical interfaces for editing envelopes and graphical equalizers, and a panel of
buttons for common operations. A more complete description of NyquistIDE is
in Chapter “The NyquistIDE Program” in the Nyquist Reference Manual.

For now, all you really need to know is that you can enter Nyquist commands
by typing into the upper left window. When you type return, the expression you
typed is sent to Nyquist, and the results appear in the window below. You can edit
files by clicking on the New File or Open File buttons. After editing some text, you
can load the text into Nyquist by clicking the Load button. NyquistIDE always
saves the file first; then it tells Nyquist to load the file. You will be prompted for a
file name the first time you load a new file.

Try some of these examples. These are SAL commands, so be sure to enter
SAL mode. Then, just type these one-by-one into the upper left window.

play pluck(c4)

play pluck(c4) ~ 3

play piano-note(5, fs1, 100)

play osc(c4)

play osc(c4) * osc(d4)

play pluck(c4) ~ 3

play noise() * env(0.05, 0.1, 0.5, 1, 0.5, 0.4)

1.6 Constants, Variables and Functions
As in XLISP, simple constant value expressions include:

• integers (FIXNUM’s), such as 1215,

• floats (FLONUM’s) such as 12.15,

• strings (STRING’s) such as "Magna Carta",

• symbols (SYMBOL’s) can be denoted by quote(name), e.g. symbol FOO
is denoted by quote(foo). Think of symbols as unique strings. Every time
you write quote(foo), you get exactly the same identical value. Symbols
in this form are not too common, but “raw” symbols, e.g. foo, are used to
denote values of variables and to denote functions.

Additional constant expressions in SAL are:

• lists such as {c 60 e 64}. Note that there are no commas to separate list
elements, and symbols in lists are not evaluated as variables but stand for
themselves. Lists may contain numbers, booleans (which represent XLisp’s
T or nil, SAL identifiers (representing XLisp symbols), strings, SAL oper-
ators (representing XLisp symbols), and nested lists.
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• Booleans: SAL interprets #t as true and #f as false. (But there is also the
variable t to indicate “true,” and nil to indicate “false.” Usually we use
these cleaner and prettier forms instead of #t and #f.

A curious property of Lisp and Sal is that false and the empty list are the same
value. Since SAL is based on Lisp, #f and {} (the empty list) are equal.

Variables are denoted by symbols such as count or duration. Variable
names may include digits and the characters - + * $ ~ ! @ # % ^ & \ : < > .
/ ? _; however, it is strongly recommended to avoid special characters when nam-
ing variables and functions. One exception is that the dash (-) is used to create
compound names.

Recommended form: magna-carta, phrase-len; to be avoided:
magnaCarta, magna_carta, magnacarta, phraseLen, phrase_len,
phraselen.

SAL and Lisp convert all variable letters to upper case, so foo and FOO and
Foo all denote the same variable. The preferred way to write variables and func-
tions is in all lower case. (There are ways to create symbols and variables with
lower case letters, but this should be avoided.)

A symbol with a leading colon (:) evaluates to itself. E.g. :foo has the value
:FOO. Otherwise, a symbol denotes either a local variable, a formal parameter, or
a global variable. As in Lisp, variables do not have data types or type declarations.
The type of a variable is determined at runtime by its value.

Functions in SAL include both operators, e.g. 1 + 2 and standard function
notation, e.g. sqrt(2). The most important thing to know about operators is
that you must separate operators from operands with white space. For example,
a + b is an expression that denotes “a plus b”, but a+b (no spaces) denotes the
value of a variable with the unusual name of “A+B”.

Functions are invoked using what should be familiar notation, e.g. sin(pi)
or max(x, 100). Some functions (including max) take a variable number of ar-
guments. Some functions take keyword arguments, for example

string-downcase("ABCD", start: 2)

returns ABcd because the keyword parameter start: 2 says to convert to lower
case starting at position 2.

1.7 Defining Functions
Before a function can be called from an expression (as described above), it must
be defined. A function definition gives the function name, a list of parameters,
and a statement. When a function is called, the actual parameter expressions are
evaluated from left to right and the formal parameters of the function definition
are set to these values. Then, the function body, a statement, is evaluated. The
syntax to define functions in SAL is:

[ define ] function name ( [parameter {, parameter }*] )
statement

This syntax meta-notation uses brackets [...] to denote optional elements and
braces with a star {...}* to denote zero or more repetitions, but you do not literally
write brackets or braces. Italics denote place-holders, e.g. name means you write
the name of the function you are defining, e.g. my-function (remember names
in SAL can have hyphens). Beginning a function definition with the keyword
define is optional, so a minimal function definition is:
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function three() return 3

Note that space and newlines are ignored, so that could be equivalently written:

function three()
return 3

A function with two parameters is:

function simple-adder(a, b) return a + b

The formal parameters may be positional parameters that are matched with actual
parameters by position from left to right. Syntactically, these are symbols and
these symbols are essentially local variables that exist only until statement com-
pletes or a return statement causes the function evaluation to end. As in Lisp,
parameters are passed by value, so assigning a new value to a formal parameter
has no effect on the caller. However, lists and arrays are not copied, so internal
changes to a list or array produce observable side effects.

Alternatively, formal parameters may be keyword parameters. Here the pa-
rameter is actually a pair: a keyword parameter, which is a symbol followed by
a colon, and a default value, given by any expression. Within the body of the
function, the keyword parameter is named by a symbol whose name matches the
keyword parameter except there is no final colon.

define function foo(x: 1, y: bar(2, 3))
display "foo", x, y

exec foo(x: 6, y: 7)

In this example, x is bound to the value 6 and y is bound to the value 7,
so the example prints “foo : X = 6, Y = 7”. Note that while the keyword
parameters are x: and y:, the corresponding variable names in the function body
are x and y, respectively.

The parameters are meaningful only within the lexical (static) scope of state-
ment. They are not accessible from within other functions even if they are called
by this function.

Use a begin-end compound statement if the body of the function should
contain more than one statement or you need to define local variables. Use a
return statement to return a value from the function. If statement completes
without a return, the value false (nil) is returned.

See the Nyquist Reference Manual for complete information and details of
begin-end, return, and other statements.

1.8 Simple Commands

1.8.1 exec
exec expression
Unlike most other programming languages, you cannot simply type an expression
as a statement. If you want to evaluate an expression, e.g. call a function, you
must use an exec statement. The statement simply evaluates the expression. For
example,

exec set-sound-srate(22050.0) ; change default sample rate
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1.8.2 load
load expression
The load command loads a file named by expression, which must evaluate to a
string path name for the file. To load a file, SAL interprets each statement in the
file, stopping when the end of the file or an error is encountered. If the file ends in
.lsp, the file is assumed to contain Lisp expressions, which are evaluated by the
XLISP interpreter. In general, SAL files should end with the extension .sal.

1.8.3 play
play expr
The play statement plays the sound computed by expr, an expression.

1.8.4 plot
plot expr, dur, n
The plot statement plots the sound denoted by expr, an expression. If you plot
a long sound, the plot statement will by default truncate the sound to 2.0 seconds
and resample the signal to 1000 points. The optional dur is an expression that
specifies the (maximum) duration to be plotted, and the optional n specifies the
number of points to be plotted. Executing a plot statement is equivalent to calling
the s-plot function.

1.8.5 print
print expr, expr ...
The print statement prints the values separated by spaces and followed by a
newline. There may be 0, 1, or more expressions separated by commas (,).

1.8.6 display
display string, expression, expression ...
The display statement is handy for debugging. When executed, display prints
the string followed by a colon (:) and then, for each expression, the expression and
its value are printed; after the last expression, a newline is printed. For example,

display "In function foo", bar, baz

prints

In function foo : bar = 23, baz = 5.3

SAL may print the expressions using Lisp syntax, e.g. if the expression is
“bar + baz,” do not be surprised if the output is:

(sum bar baz) = 28.3

1.8.7 set
set var op expression
The set statement changes the value of a variable var according to the operator
op and the value of expression. The operators are:

= The value of expression is assigned to var.

+= The value of expression is added to var.
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*= The value of var is multiplied by the value of the expression.

&= The value of expression is inserted as the last element of the list referenced by
var. If var is the empty list (denoted by nil or \#f), then var is assigned a
newly constructed list of one element, the value of expression.

ˆ= The value of expression, a list, is appended to the list referenced by var. If
var is the empty list (denoted by nil or \#f), then var is assigned the (list)
value of expression.

@= Pushes the value of expression onto the front of the list referenced by var. If
var is empty (denoted by nil or \#f), then var is assigned a newly con-
structed list of one element, the value of expression.

<= Sets the new value of var to the minimum of the old value of var and the value
of expression.

>= Sets the new value of var to the maximum of the old value of var and the value
of expression.

The set command can also perform multiple assignments separated by com-
mas (,):

; example from Rick Taube’s SAL description
loop

with a, b = 0, c = 1, d = {}, e = {}, f = -1, g = 0
for i below 5
set a = i, b += 1, c *= 2, d &= i, e @= i, f <= i, g >= i
finally display "results", a, b, c, d, e, f, g

end

1.9 Control Constructs

1.9.1 begin end
A begin-end statement consists of a sequence of statements surrounded by the
begin and end keywords. This form is often used for function definitions and
after then or else where the syntax demands a single statement but you want to
perform more than one action. Variables may be declared using an optional with
statement immediately after begin. For example:

begin
with db = 12.0,

linear = db-to-linear(db)
print db, "dB represents a factor of", linear
set scale-factor = linear

end

1.9.2 if then else
if expression then statement [else statement]
An if statement evaluates a test expression. If it is true, it evaluates the statement
following then. If false, the statement after else is evaluated. Use a begin-end
statement to evaluate more than one statement in then or else parts.

Here are some examples...

if x < 0 then x = -x ; x gets its absoute value
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if x > upper-bound then
begin

print "x too big, setting to", upper-bound
x = upper-bound

end
else

if x < lower-bound then
begin

print "x too small, setting to", lower-bound
x = lower-bound

end

Notice in this example that the else part is another if statement. An if may
also be the then part of another if, so there could be two possible if’s with
which to associate an else. An else clause always associates with the closest
previous if that does not already have an else clause.

1.9.3 loop
The loop statement is by far the most complex statement in SAL, but it offers
great flexibility for just about any kind of iteration. However, when computing
sounds, loops are generally the wrong approach, and there are special functions
such as seqrep and simrep to use iteration to create sequential and simultaneous
combinations of sounds as well as special functions to iterate over scores, apply
synthesis functions, and combine the results.

Therefore, loops are mainly for imperative programming where you want to
iterate over lists, arrays, or other discrete structures. You will probably need loops
at some point, so at least scan this section to see what is available, but there is no
need to dwell on this section for now.

The basic function of a loop is to repeatedly evaluate a sequence of actions
which are statements. The syntax for a loop statement is:

loop [ with-stmt ] { stepping }* { stopping }* { action }+
[ final ] end

Before the loop begins, local variables may be declared in a with statement.
The stepping clauses do several things. They introduce and initialize addi-

tional local variables similar to the with statement. However, these local vari-
ables are updated to new values after the actions. In addition, some stepping
clauses have associated stopping conditions, which are tested on each iteration
before evaluating the actions.

There are also stopping clauses that provide additional tests to stop the itera-
tion. These are also evaluated and tested on each iteration before evaluating the
actions.

When some stepping or stopping condition causes the iteration to stop, the
final clause is evaluated (if present). Local variables and their values can still be
accessed in the final clause. After the final clause, the loop statement completes.

The stepping clauses are the following:

repeat expression

sets the number of iterations to the value of expression, which should be an integer
(FIXNUM).

for var = expression [ then expr2 ]
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introduces a new local variable named var and initializes it to expression. Before
each subsequent iteration, var is set to the value of expr2. If the then part is omit-
ted, expression is re-evaluated and assigned to var on each subsequent iteration.
Note that this differs from a with statement where expressions are evaluated and
variables are only assigned their values once.

for var in expression

evaluates expression to obtain a list and creates a new local variable initialized to
the first element of the list. After each iteration, var is assigned the next element
of the list. Iteration stops when var has assumed all values from the list. If the list
is initially empty, the loop actions are not evaluated (there are zero iterations).

for var [ from from-expr ] [ [ to | below | downto | above ]
to-expr ] [ by step-expr ]

is yet another stepping clause. Note that here we have introduced a new meta-
syntax notation: [ term1 | term2 | term3 ] means a valid expression contains one
of term1, term2, or term3.

This for clause introduces a new local variable named var and initialized
to the value of the expression from-expr (with a default value of 0). After each
iteration of the loop, var is incremented by the value of step-expr (with a default
value of 1). The iteration ends when var is greater than the value of to-expr if
there is a to clause, greater than or equal to the value of to-expr if there is a
below clause, less than the value of to-expr if there is a downto clause, or less
than or equal to the value of to-expr if there is an above clause. (In the cases of
downto and above, the default increment value is -1. If there is no to, below,
downto, or above clause, no iteration stop test is created for this stepping clause.)

The stopping clauses are the following:

while expression
The iterations are stopped when expression evaluates to false. Anything not false
is considered to be true.

until expression
The iterations are stopped when expression evaluates to anything that is not false
(nil).

The loop action consists of one or more SAL statements (indicated by the “+”
in the meta-syntax).
The final clause is defined as follows:

finally statement
The statement is evaluated when one of the stepping or stopping clauses ends the
loop. As always, statement may be a begin-end statement. If an action in the
loop body evaluates a return statement, the finally statement is not executed.
Loops often fall into common patterns, such as iterating a fixed number of times,
performing an operation on some range of integers, collecting results in a list,
and linearly searching for a solution. These forms are illustrated in the examples
below.

; iterate 10 times
loop

repeat 10
print random(100)

end
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; print even numbers from 10 to 20
; note that 20 is printed. On the next iteration,
; i = 22, so i >= 22, so the loop exits.
loop

for i from 10 to 22 by 2
print i

end

; collect even numbers in a list
loop

with lis
for i from 0 to 10 by 2
set lis @= i ; push integers on front of list,

; which is much faster than append,
; but list is built in reverse

finally set result = reverse(lis)
end

; now, the variable result has a list of evens
; find the first even number in a list
result = #f ; #f means "false"
loop

for elem in lis
until evenp(elem)
finally result = elem

end
; result has first even value in lis (or it is #f)

1.9.4 simrep Example
We can define function pluck-chord as follows:

function pluck-chord(pitch, interval, n)
begin

with s = pluck(pitch)
loop

for i from 1 below n
set s += pluck(pitch + interval * i)

end
return s

end

play pluck-chord(c3, 5, 2)
play pluck-chord(d3, 7, 4) ~ 3
play pluck-chord(c2, 10, 7) ~ 8

But we mentioned earlier that loops should not normally be used to compute
sounds. Just to preview what is coming up ahead, here is how pluck-chord
should be written:

function pluck-chord(pitch, interval, n)
return simrep(i, n, pluck(pitch + i * interval))

play pluck-chord(c3, 5, 2)
play pluck-chord(d3, 7, 4) ~ 3
play pluck-chord(c2, 10, 7) ~ 8
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Note that this version of the function is substantially smaller (loop is power-
ful, but sometimes a bit verbose). In addition, one could argue this simrep version
is more correct – in the case where n is 0, this version returns silence, whereas the
loop version always initializes s to a pluck sound, even if n is zero, so it never
returns silence. The simrep construct and its cousin, seqrep, are described in
the Nyquist Reference Manual, and we will return to them in Section ??.
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