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1 Programming Techniques in Nyquist

One of the unusual things about Nyquist is the support for timing (temporary semantics), which is lacking in most
programming languages. Nyquist also has signals as a fundamental data type. Here we introduce a number of
different programming techniques related to timing and signals that are useful in Nyquist.

1.1 Recursive Sound Sequences

We first look at the idea of recursive sound sequences. The seq function delays evaluation of each behavior until
the previous behavior is finished. There are other functions, including timed-seq that work in a similar way.
This delayed evaluation, a form of lazy evaluation, is important in practice because if sound computation can be
postponed until needed, Nyquist can avoid storing large signals in memory. Lazy evaluation has another benefit, in
that it allows you to express infinite sounds recursively. Consider a drum roll as an example. We define a drum roll
recursively as follows: Start with one drum stroke and follow it with a drum roll!

The drum-roll () function below is a direct implementation of this idea. drum-rol11 () builds up a drum roll
with one stroke at a time, recursively, and returns an infinite drum roll sound sequence. Even Google doesn’t have
that much disk space, so to avoid the obvious problem of storing an infinite sound, we can multiply drum-rol1 ()
by an envelope. In 1imited-drum-roll(), we make a finite drum roll by multiplying drum-rol11() by const (1,
2). const (1, 2) is actually a unit generator that returns a constant value of 1 until the duration of 2, then it drops
to 0. Here, multiplying a limited sound by an infinite sound gives us a finite computation and result. Note that the
multiplication operator in Nyquist is quite smart. It knows that when multiplying by 0, the result is always 0; and
when a sound reaches its stop time, it remains 0 forever, thus Nyquist can terminate the recursion at the sound stop
time.

define function drum-stroke()

return noise() * pwev(l, 0.05, 0.1)
define function drum-roll()

return seq(drum-stroke(), drum-roll()) ;recursion!
define function limited-drum-roll()

return const(1l, 2) * drum-roll() ;duration=2
play limited-drum-roll()

1.2 Matching Durations

In Nyquist, sounds are considered to be functions of time, with no upper bound on time. Sounds do have a “stop
time” after which the signal is considered to remain at zero forever. This means that you can easily combine



sounds of different durations by mistake. For example, you can multiply a 1-second oscillator signal by a 2-second
envelope, resulting in a 1-second signal that probably ends abruptly before the envelope goes to zero.

It is a “feature” of Nyquist that you can compose longer sounds from shorter sounds or multiply by short en-
velopes to isolate sections of longer sounds, but this leads to one of the most common errors in Nyquist: Combining
sounds and controls with different durations by mistake.

Here is an example of this common error:

play pwl(0.5, 1, 10, 1, 13) * ; I3-seconds duration
osc(c4) ; nominally 1-second duration
; final result: sound stops at 1 second(!)

Remember that Nyquist sounds are immutable. Nyquist will not and cannot go back and recompute behaviors
to get the “right” durations—how would it know? There are two basic approaches to make durations match. The first
is to make everything have a nominal length of 1 and use the stretch operator to change durations:

(pwl(0.1, 1, 0.8, 1, 1) * osc(c4)) ~ 13

Here we have changed pwl to have a duration of 1 rather than 13. This is the default duration of osc, so they match.
Note also the use of parentheses to ensure that the stretch factor applies to both pwl and osc.
The second method is to provide duration parameters everywhere:

pwl(0.5, 1, 10, 1, 13) * osc(c4, 13)

Here, we kept the original 13-second long pwl function, but we explicitly set the duration of osc to 13. If you
provide duration parameters everywhere, you will often end up passing duration as a parameter, but that’s not
always a bad thing as it makes duration management more explicit.

1.3 Control Functions

Another useful technique in Nyquist is to carefully construct control functions. Synthesizing control is like synthe-
sizing sound, and often control is even more important that waveforms and spectra in producing a musical result.

1.3.1 Smooth Transitions

Apply envelopes to almost everything. Even control functions can have control functions! A good example is
vibrato. A “standard” vibrato function might look like 1fo(6) * 5, but this would generate constant vibrato
throughout a tone. Instead, consider 1fo(6) * 5 * pwl(0.3, 0, 0.5, 1, 0.9, 1, 1) where the vibrato
depth is controlled by an envelope. Initially, there is no vibrato, the vibrato starts to emerge at 0.3 and reaches
the full depth at 0.5, and finally tapers rapidly from 0.9 to 1. Of course this might be stretched, so these numbers
are relative to the whole duration. Thus, we not only use envelopes to get smooth transitions in amplitude at the
beginnings and endings of notes, we can use envelopes to get smooth transitions in vibrato depth and other controls.

1.3.2 Composing Control Functions

The are a few main “workhorse” functions for control signals.

1. for periodic variation such as vibrato, the 1fo function generates low-frequency sinusoidal oscillations. The
default sample rate of 1fo is 1/20 of the audio sample rate, so do not use this function for audio frequencies.
If the frequency is not constant, the simplest alternative is hzosc, which allows its first argument to be a
SOUND as well as a number.

2. for non-periodic but deterministic controls such as envelopes, pwl and the related family (including pwlv and
pwlev) or the envelope function env are good choices.



3. for randomness, a good choice is noise. By itself, noise generates audio rate noise, which is not suitable
for adding small random fluctuations to control signals. What we often use in this case is a random signal that
ramps smoothly from one amplitude to the next, with a new amplitude every 100 ms or so. You can obtain
this effect by making a very low sample rate noise signal. When this signal is added to or multiplied by a
higher sample rate signal, the noise signal is linearly interpolated to match the rate of the other signal, thus
achieving a smooth ramp between samples. The expression for this is sound-srate-abs (10, noise()),
which uses the sound-srate-abs transform to change the environment for noise to a sample rate of 10 Hz.
See Figure 1.

Figure 1: Plots of: noise, sound-srate-abs (10, noise()), ramp() and sound-srate-abs(10, noise())
* 0.1 + ramp(). The bottom plot shows how the noise function can be used to add jitter or randomness to an
otherwise mathematically smooth control function. Such jitter or randomness occurs naturally, often due to minute
natural human muscle tremors.

1.3.3 Global vs. Local Control Functions

Nyquist allows you to use control functions including envelopes at different levels of hierarchy. For example, you
could synthesize a sequence of notes with individual amplitude envelopes, then multiply the whole sequence by
an overarching envelope to give a sense of phrase. Figure 2 illustrates how global and “local” envelopes might be
combined.

Figure 2: Hierarchical organization of envelopes.

In the simple case of envelopes, you can just apply the global envelope through multiplication after notes are
synthesized. In some other cases, you might need to actually pass the global function as a parameter to be used for
synthesis. Suppose that in Figure 2, the uppermost (global) envelope is supposed to control the index of modulation
in FM synthesis. This effect cannot be applied after synthesis, so you must pass the global envelope as a parameter



to each note. Within each note, you might expect the whole global envelope to somehow be shifted and stretched
according to the note’s start time and duration, but that does not happen. Instead, since the control function has
already been computed as a SOUND, it is immutable and fixed in time. Thus, the note only “sees” the portion of the
control function over the duration of the note, as indicated by the dotted lines in Figure 2.

In some cases, e.g. FM synthesis, the control function determines the note start time and duration, so fmosc
might try to create a tone over the entire duration of the global envelope, depending on how you use it. One way to
“slice” out a piece of a global envelope or control function according to the current environment is to use const (1)
which forms a rectangular pulse that is 1 from the start time to the nominal duration according to the environment.
If you multiply a global envelope parameter by const (1), you are sure to get something that is confined within the
nominal starting and ending times in the environment.

1.4 Stretchable Behaviors

An important feature of Nyquist is the fact that functions represent classes of behaviors that can produce signals at
different start times, with different durations, and be affected by many other parameters, both explicit and implicit.

Nyquist has default stretch behaviors for all of its primitives, and we have seen this many times. Often, the
default behavior does the “right thing,” (see the discussion above about matching durations). But sometimes you
need to customize what it means to “stretch” a sound. For example, if you stretch a melody, you make notes longer,
but if you stretch a drum roll, you do not make drum strokes slower. Instead, you add more drum strokes to fill the
time. With Nyquist, you can create your own abstract behaviors to model things like drum rolls, constant-rate trills,
and envelopes with constant attack times, none of which follow simple default rules of stretching.

Here is an example where you want the number of things to increase with duration:

define function n-things()
begin
with dur = get-duration(1),
n = round(dur / *thing-durationx)
return seqrep(i, n, thing() =~ 1)
end

The basic idea here is to first “capture” the nominal duration using get-duration(1). Then, we compute n
in terms of duration. Now, if we simply made n things in the current stretch environment (stretch by dur), we
would create a sound with duration roughly n x *thing-duration* X dur, but we want to compute thing ()
without stretching. The ~~ operator, also called absolute stretch, resets the environment stretch factor to 1 when we
call thing(), so now the total duration will be approximately n x *thing-duration*, which is about equal to
get-duration(1) as desired.

Here is an example where you want an envelope to have a fixed rise time.

define function my-envelope()

begin

with dur = get-duration(1)

return pwl(*rise-timex, 1, dur - *fall-timex, 1, dur) ~~ 1
end

As in the previous example, we “capture” duration to the variable dur and then compute within an absolute stretch
(7)) of 1 so that all duration control is explicit and in terms of dur. We set the rise time to a constant, *rise-timex*
and compute the beginning and ending of the “release” relative to dur which will be the absolute duration of the
envelope.

1.5 Summary

We have seen a number of useful Nyquist programming techniques. To make sure durations match, either normalize
durations to 1 and stretch everything as a group using the stretch operator (™), or avoid stretching altogether and use



explicit duration parameters everywhere. In general, use envelopes everywhere to achieve smooth transitions, and
never let an oscillator output start or stop without a smooth envelope. Control is all important, so in spite of many
simplified examples you will encounter, every parameter should be a candidate for control over time: amplitude,
modulation, vibrato, filter cutoff, and even control functions themselves can be modulated or varied at multiple time
scales. And speaking of multiple time scales, do not forget that musical gestures consisting of multiple notes or
sound events can be sculpted using over-arching envelopes or smooth control changes that span whole phrases.

2 Granular Synthesis

We know from our discussion of the Fourier transform that that complex sounds can be created by adding together
a number of sine waves. Granular synthesis uses a similar idea, except that instead of a set of sine waves whose fre-
quencies and amplitudes change over time, we use many thousands of very short (usually less than 100 milliseconds)
overlapping sound bursts or grains. The waveforms of these grains are often sinusoidal, although any waveform
can be used. (One alternative to sinusoidal waveforms is to use grains of sampled sounds, either pre-recorded or
captured live.) By manipulating the temporal placement of large numbers of grains and their frequencies, amplitude
envelopes, and waveshapes, very complex and time-variant sounds can be created.

2.1 Grains

To make a grain, we simply take any sound (e.g. a sinusoid or sound from a sound file) and apply a short smoothing
envelope to avoid clicks. (See Figure 3.) The duration is typically from around 20ms to 200ms: long enough to
convey a little content and some spectral information, but short enough to avoid containing an entire note or word
(from speech sounds) or anything too recognizable.
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Figure 3: Applying a short envelope to a sound to make a grain for granular synthesis. How would a different
amplitude envelope, say a square one, affect the shape of the grain? What would it do to the sound of the grain?
What would happen if the sound was a recording of a natural sound instead of a sinusoid? What would be the effect
of a longer or shorter envelope?

2.2 Clouds of Sound

Granular synthesis is often used to create what can be thought of as "sound clouds"—shifting regions of sound
energy that seem to move around a sonic space. A number of composers, like lannis Xenakis and Barry Truax,
thought of granular synthesis as a way of shaping large masses of sound by using granulation techniques. These two
composers are both considered pioneers of this technique (Truax wrote some of the first special-purpose software
for granular synthesis). Sometimes, cloud terminology is even used to talk about ways of arranging grains into
different sorts of configurations.
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Figure 4: Visualization of a granular synthesis "score." Each dot represents a grain at a particular frequency and
moment in time. An image such as this one can give us a good idea of how this score might sound, even though
there is some important information left out (such as the grain amplitudes, waveforms, amplitude envelopes, and
so on). What sorts of sounds does this image imply? If you had three vocal performers, one for each "cloud," how
would you go about performing this piece? Try it!

2.3 Grain Selection, Control and Organization

In granular synthesis, we make and combine thousands of grains (sometimes thousands of grains per second), which
is too much to do by hand, so we use computation to do the work, and we use high-level parameters to control things.
Beyond this, granular synthesis is not a specific procedure and there is no right or wrong way to do it. It is good to
be aware of the range of mechanisms by which grains are selected, processed, and organized.

One important control parameter is density. Typically granular synthesis is quite dense, with 10 or more grains
overlapping at any given time. But grains can also be sparse, creating regular rhythms or isolated random sound
events.

Stochastic or statistical control is common in granular synthesis. For example, we could pick grains from
random locations in a file and play them at random times. An interesting technique is to scan through a source
file, but rather than taking grains sequentially, we add a random offset to the source location, taking grains in the
neighborhood of a location that progresses through the file. This produces changes over time that mirror what is
in the file, but at any given time, the cloud of sound can be quite chaotic, disguising any specific audio content or
sound events in the file.

It is also possible to resample the grain to produce pitch shifts. If pitch shifting is random, a single tone in the
source can become a multi-pitch cluster or cloud in the output. If you resample grains, you can shift the pitch by
octaves or harmonics, which might tend to harmonize the output sound when there is a single pitch on the input, or
you can resample by random ratios, creating an atonal or microtonal effect. When you synthesize grains, you can
use regular spacing, e.g. play a grain every 10 ms, which will tend to create a continuous sounding texture, or you
can play grains with randomized inter-onset intervals, creating a more chaotic or bubbly sound.

Some interesting things to do with granular synthesis include vocal mumblings using grains to chop up speech
and make speech-sounding nonsense, especially using grains with approximately the duration of phonemes so that
whole words are obliterated. Granular synthesis can also be used for time stretching: By moving through a file very
slowly, fetching overlapping grains and outputting them with less overlap, the file is apparently stretched, a shown
in Figure 5. There will be artifacts because grains will not add up perfectly smoothly to form a continuous sound,
but this can be a feature as well as a limitation, depending on your musical goals.
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Figure 5: Stretching with granular synthesis.

2.4 Granular Synthesis in Nyquist

Nyquist does not have a “granular synthesis” function because there are so many ways to implement and control
granular synthesis. However, Nyquist is almost unique in its ability to express granular synthesis using a combina-
tion of signal processing and control constructs.

24.1 Generating a Grain

Figure 6 illustrates Nyquist code to create an smooth envelope and read a grain’s worth of audio from a file to
construct a smooth grain. Note the use of duration d both to stretch the envelope and control how many samples are
read from the file. Below, we consider two approaches to granular synthesis implementation. The first uses scores
and the second uses seqrep.

function cos-pulse()
return 0.5 * (1 + hzosc(l / get-duration(l),
*sine-table*, 270.0))

s-read("filename.wav", time-offset: seconds, dur: d) *
(cos-pulse() ~ d)

Figure 6: Contructing a grain in Nyquist.

2.5 Grains In Scores

A score for granular synthesis treats each grain as a sound event:

{{0 0.05 {grain offset: 2.1}}
{0.02 0.06 {grain offset: 3.0}}
N,



The score calls upon grain, which we can define as follows. Notice that grain durations are specified in the score
and implemented through the environment, so the cos-pulse signal will be stretched by the duration, but s-read
is unaffected by stretching. Therefore, we must obtain the stretch factor using get-duration(1) and pass that
value to s-read as the optional dur: keyword parameter:

function grain(offset: 0)
begin with dur = get-duration(1)
return s-read("filename.wav",
time-offset: offset, dur: dur) *
cos-pulse()

Now, we can make make a score with score-gen. In the following expression, we construct 2000 grains with
randomized inter-onset intervals and using pattern objects to compute the grain durations and file offsets:

score-gen(score-len: 2000,
ioi: 0.05 + rrandom() * 0.01,
dur: next(dur-pat),
offset: next(offset-pat))

You could also use more randomness to compute parameters, e.g. the duration could come from a Gaussian dis-
tribution (see the Nyquist function gaussian-dist), and offset: could be computed by slowly moving through
the file and adding a random jitter, e.g. max (0, sg-count * 0.01 + rrandom() * 0.2).

2.6 Grains With Seqrep

Rather than computing large scores, we can use Nyquist control constructs to creates grains “on the fly.” In the
following example, seqrep is used to create and sum 2000 sounds. Each sound is produced by a call to grain,
which is stretched by values from dur-pat. To obtain grain overlap, we use set-logical-stop with an IOI
(logical stop time) parameter of 0.05 + rrandom() * 0.01, so the grain IOI will be 50 ms £ 10 ms:

seqrep(i, 2000,
set-logical-stop(
grain(offset: next(offset-pat)) ~
next (dur-pat),
0.05 + rrandom() * 0.01))

2.7 The gran Extension

For another example, you can install the gran extension using Nyquist’s Extension Manager. The package includes
a function sf-granulate that implements granular synthesis using a sound file as input.

2.8 Other Ideas

You might want to implement something like the tendency masks we described earlier or use a pwl function to
describe how some granular synthesis parameters evolve over time. Since pwl produces a signal and you often
need numbers to control each grain, you can use sref to evaluate the signal at a specific time, e.g. s-ref (sound,
time) will evaluate sound at time.

Another interesting idea is to base granular synthesis parameters on the source sound itself. A particularly
effective technique is to select grains by slowly advancing through a file, causing a time-expansion of the file
content. The most interesting portions of the file are usually note onsets and places where things are changing
rapidly, which you might be able to detect by measuring either amplitude or spectral centroid. Thus, if the rate



at which you advanced through the file can be inversely proportional to amplitude or spectral centroid, then the
“interesting” material will be time-expanded, and you will pass over the “boring” steady-state portions of the signal
quickly.

2.9 Summary

Granular synthesis creates sound by summing thousands of sound particles or grains with short durations to form
clouds of sounds. Granular synthesis can construct a wide range of textures, and rich timbres can be created by
taking grains from recordings of natural sounds. Granular synthesis offers many choices of details including grain
duration, density, random or deterministic timing, pitch shifts and source sounds.
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