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This week’s readings touches on some very different topics. First, we dive into the Fast Fourier Transform
for spectral analysis and use it to compute the Spectral Centroid, which you will use for your next project. Then,
we learn about some Nyquist functions that make interesting sequences of numbers and how to incorporate those
sequences as note parameters in scores. Finally, we will read about a variety of algorithmic composition techniques.

1 The Short Time Fourier Transform and FFT

In practice, the Fourier Transform cannot be used computationally because the input is infinite and the signals
are continuous. Therefore, we use the Discrete Short Time Fourier Transform, where the continuous integral
becomes a summation of discrete time points (samples), and where the summation is performed over a finite time
interval, typically around 50 to 100 ms. The so-called Short-Time Discrete Fourier Transform (STDFT, or just
DFT) equations are shown in Figure 1. Note the similarity to the Fourier Transform integrals we saw earlier.
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Figure 1: Equations for the Short Time Discrete Fourier Transform.

The Fast Fourier Transform (FFT) is simply a fast algorithm for computing the DFT. FFT implies DFT, but
rather than directly implementing the equations in Figure 1, which has a run time proportional to N2, the FFT uses
a very clever NlogN algorithm to transform N samples.

An FFT of a time domain signal takes the samples and gives us a new set of numbers representing the frequen-
cies, amplitudes, and phases of the sine waves that make up the sound we have analyzed. It is these data that are
displayed in the sonograms we looked at earlier.

Figure 2 illustrates some FFT data. It shows the first 16 bins of a typical FFT analysis after the conversion is
made from real and imaginary numbers to amplitude/phase pairs. We left out the phases, because, well, it was too
much trouble to just make up a bunch of arbitrary phases between 0 and 2. In a lot of cases, you might not need
them (and in a lot of cases, you would!). In this case, the sample rate is 44.1 kHz and the FFT size is 1,024, so the
bin width (in frequency) is the Nyquist frequency (44,100/2 = 22,050) divided by the FFT size, or about 22 Hz.

Amplitude values are assumed to be between 0 and 1, and notice that they’re quite small because they all must
sum to 1 (and there are a lot of bins!).



We confess that we just sort of made up the numbers; but notice that we made them up to represent a sound that
has a simple, more or less harmonic structure with a fundamental somewhere in the 66 Hz to 88 Hz range (you can
see its harmonics at around 2, 3, 4, 5, and 6 times its frequency, and note that the harmonics decrease in amplitude
more or less like they would in a sawtooth wave).
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44- 0.0001
66- 0.1

88- 0.002
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132- 0.0023
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176- 0.0005
198- 0.00026
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242- 0.0001
264- 0.019
286- 0.00013
318- 0.00005
340- 0.0123

Figure 2: Graph and table of spectral components.

One important consequence of the FFT (or equivalently, DFT) is that we only “see” the signal during a short
period. We pretend that the spectrum is stable, at least for the duration of the analysis window, but this is rarely
true. Thus, the FFT tells us something about the signal over the analysis window, but we should always keep in
mind that the FFT changes with window size and the concept of a spectrum at a point in time is not well defined.
For example, harmonics of periodic signals usually show up in the FFT as peaks in the spectrum with some spread
rather than single-frequency spikes, even though a harmonic intuitively has a single specific frequency.

1.1 How to Interpret a Discrete Spectrum

Just as we divide signals over time into discrete points (called samples), the DFT divides the spectrum into discrete
points we call “frequency bins.” The DFT captures all of the information in the analysis window, so if you analyze
N samples, it you should have N degrees of freedom in the DFT. Since each DFT bin has an amplitude and phase,
we end up with about N/2 bins. The complete story is that there are actually N — 1 bins, but one represents zero
frequency where only the real term is non-zero (because sin(0) is 0), and one bin represents the Nyquist frequency
where again, only the real term is non-zero (because sin(27wki/N) is zero).

These N/2+ 1 bins are spaced across the frequency range from 0 to the Nyquist frequency (half the sample
rate), so the spacing between bins is the sample rate divided by the number of bins:

bin frequency spacing = sample rate / number of samples



We can also relate the frequency spacing of bins to the duration of the analysis window:

number of samples = analysis duration * sample rate, so
bin frequency spacing = sample rate / (analysis duration * sample rate), so
bin frequency spacing = 1 / analysis duration

1.2 Frame or Analysis Window Size

So let’s say that we decide on a frame size of 1,024 samples. This is a common choice because most FFT algorithms
in use for sound processing require a number of samples that is a power of two, and it’s important not to get too
much or too little of the sound.

A frame size of 1,024 samples gives us 512 frequency bands. If we assume that we’re using a sample rate of
44.1 kHz, we know that we have a frequency range (remember the Nyquist theorem) of 0 kHz to 22.05 kHz. To
find out how wide each of our frequency bins is, we use one of the formulas above, e.g. sample rate / number of
samples, or 44100 / 1024, or about 43 Hz. Remember that frequency perception is logarithmic, so 43 Hz gives us
worse resolution at the low frequencies and better resolution (at least perceptually) at higher frequencies.

By selecting a certain frame size and its corresponding bandwidth, we avoid the problem of having to compute
an infinite number of frequency components in a sound. Instead, we just compute one component for each frequency
band.

1.3 Time/Frequency Trade-off and the Uncertainty Principle

A drawback of the FFT is the trade-off that must be made between frequency and time resolution. The more
accurately we want to measure the frequency content of a signal, the more samples we have to analyze in each
frame of the FFT. Yet there is a cost to expanding the frame size—the larger the frame, the less we know about the
temporal events that take place within that frame. This trade-off is captured in the expression:

bin frequency spacing = 1 / analysis duration.

In other words, more samples require more time; but the longer the time, the less the sound over that interval
looks like a sine wave, or something periodic—so the less well it is represented by the FFT. We simply can’t have
it both ways! See Figure 3 for an illustration.

This time/frequency trade-off in audio analysis is mathematically identical to the Heisenberg Uncertainty Prin-
ciple, which states that you can never simultaneously know the exact position and the exact speed of an object.

1.4 Magnitude or Amplitude Spectrum

Figure 1 shows that we get real (cosine) and imaginary (sine) numbers from the DFT or FFT. Typically, we prefer to
work with amplitude and phase (in fact, we often ignore the phase part and just work with amplitude). You can think
of real and imaginary as Cartesian coordinates, and amplitude and phase as radius and angle in polar coordinates.
The amplitude components A; are easily computed from the real R; and imaginary X; components using the formula

A= /R +X2

For an N-point FFT (input contains N samples), the output will have N/2 + 1 bins and therefore N/2 + 1
amplitudes. The first amplitude corresponds to 0 Hz, the second to (sample rate / N), etc., up to the last amplitude
that corresponds to the frequency (sample rate / 2).

2 Spectral Centroid

Music cognition researchers and computer musicians commonly use a measure of sounds called the spectral cen-
troid. The spectral centroid is a measure of the "brightness" of a sound, and it turns out to be extremely important in
the way we compare different sounds. If two sounds have a radically different centroid, they are generally perceived
to be timbrally distant (sometimes this is called a spectral metric).



N ""-'-'---'-; -
% ‘f-"'"": d‘
~— —
X ......'.._...‘..._..,....-,..._,._..,..._,....,,...,....,..,., Lo S S N A I PE s BA BN St SOU e N b e
01 0.2 0.3 0.4 05 0. 0.7 0.8 09 1.0 Sec
% o - —
o1 oz o3 o4 o5 T 0e 07 08 09 10 S

Figure 3: Selecting an FFT size involves making trade-offs in terms of time and frequency accuracy. Basically it
boils down to this: The more accurate the analysis is in one domain, the less accurate it will be in the other. This
figure illustrates what happens when we choose different frame sizes. In the first illustration, we used an FFT size
of 512 samples, giving us pretty good time resolution. In the second, we used 2,048 samples, giving us pretty good
frequency resolution. As a result, frequencies are smeared vertically in the first analysis, while time is smeared
horizontally in the second. What’s the solution to the time/frequency uncertainty dilemma? Compromise.



Basically, the spectral centroid can be considered the average frequency component (taking into consideration
the amplitude of all the frequency components), as illustrated in Figure 4. The formula for the spectral centroid of
one FFT frame of a sound is:
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Figure 4: A magnitude spectrum and its spectral centroid (dashed line). If you were to cut out the spectrum shape
from cardboard, it would balance on the centroid. The spectral centroid is a good measure of the overall placement
of energy in a signal from low frequencies to high.
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Figure 5: The centroid curve of a sound over time. Each point in the horizontal dimension represents a new spectral
frame. Note that centroids tend to be surprisingly high and never the "fundamental" (unless our sound is a pure sine
wave). One of these curves is of a violin tone; the other is of a rapidly changing voice (Australian sound poet Chris
Mann).



3 Patterns

Nyquist offers pattern objects that generate data streams. For example, the cycle-class of objects generate
cyclical patterns suchas "123123123 ..", 0or"1234321234.." Patterns can be used to specify pitch
sequences, rhythm, loudness, and other parameters.

In this section, we describe a variety of pattern objects. These patterns are pretty abstract, but you might think
about how various types of sequences might be applied to music composition. In the following section, we will
see how to incorporate patterns into the generation of scores for Nyquist, using a very powerful macro called
sScore-gen.

Pattern functions are automatically loaded when you start Nyquist. To use a pattern object, you first create the
pattern, e.g.

set pitch-source = make-cycle(list(c4, d4, e4, f4)

In this example, pitch-source is an object of class cycle-class which inherits from pattern-class.!

After creating the pattern, you can access it repeatedly with next to generate data, e.g.
play seqrep(i, 13, pluck(next(pitch-source), 0.2))

This will create a sequence of notes with the following pitches: c, d, e, f, c, d, e, f, c, d, e, f, c. If you evaluate
this again, the pitch sequence will continue, starting on "d".
It is very important not to confuse the creation of a sequence with its access. Consider this example:

play seqrep(i, 13,
pluck (next (make-cycle(list(c4, d4, e4, £4))), 0.2))

This looks very much like the previous example, but it only repeats notes on middle-C. The reason is that every
time pluck is evaluated, make-cycle is called and creates a new pattern object. After the first item of the pattern
is extracted with next, the cycle is not used again, and no other items are generated.

To summarize this important point, there are two steps to using a pattern. First, the pattern is created and stored
in a variable. Second, the pattern is accessed (multiple times) using next.

next (pattern-object [,#t]) [SAL]
(next pattern-object [t]) [LISP]

next returns the next element from a pattern generator object. If the optional second argument is true (default
value is false), then an entire period is returned as a list.

3.1 Pattern Examples

The following descriptions cover the basic ideas of the Nyquist pattern library. In most cases, details and optional
parameters are not described here to keep the descriptions short and to emphasize the main purpose of each type of
pattern. For complete descriptions, soo the Nyquist Reference Manual, or better yet, just read the manual instead
of these summaries.

3.1.1 Heap

The heap-class selects items in random order from a list without replacement, which means that all items are
generated once before any item is repeated. For example, two periods of make-heap(a b c) might be (C A B)
(B A C). Normally, repetitions can occur even if all list elements are distinct. This happens when the last element
of a period is chosen first in the next period. To avoid repetitions, the max: keyword argument can be set to 1. If
the argument is a pattern, a period from that pattern becomes the list from which random selections are made, and
a new list is generated every period. (See Section 3.2 on nested patterns.)

Because SAL is not an object-oriented language, these classes and their methods are not directly accessible from SAL. Instead, Nyquist
defines a functional interface, e.g. make-cycle creates an instance of cycle-class, and the next function, introduced below, retrieves the
next value from any instance of pattern-class. Using LISP syntax, you can have full access to the methods of all objects.



3.1.2 Palindrome

The palindrome-class repeatedly traverses a list forwards and then backwards. For example, two periods of
make-palindrome(a b c¢) wouldbe (A B C C B A) (A B C C B A). The elide: keyword parameter con-
trols whether the first and/or last elements are repeated:

make-palindrome(a b c, elide: nil)

;; generates ABCCBAABCCBA ...
make-palindrome(a b c, elide: t)

;; generates ABCBABCB ...

make-palindrome(a b c, elide: :first)
;; generates ABCCBABCCB ...
make-palindrome(a b c, elide: :last)

;; generates ABCBAABCBA ...

3.1.3 Random

The random-class generates items at random from a list. The default selection is uniform random with replace-
ment, but items may be further specified with a weight, a minimum repetition count, and a maximum repetition
count. Weights give the relative probability of the selection of the item (with a default weight of one). The min-
imum count specifies how many times an item, once selected at random, will be repeated. The maximum count
specifies the maximum number of times an item can be selected in a row. If an item has been generated n times in
succession, and the maximum is equal to n, then the item is disqualified in the next random selection. Weights (but
not currently minima and maxima) can be patterns. The patterns (thus the weights) are recomputed every period.

3.1.4 Line

The 1ine-class is similar to the cycle class, but when it reaches the end of the list of items, it simply repeats the
last item in the list. For example, two periods of make-1ine({a b c}) wouldbe (A B C) (C C C).

3.1.5 Accumulation

The accumulation-class takes a list of values and returns the first, followed by the first two, followed by the
first three, etc. In other words, for each list item, return all items from the first through the item. For example, if the
listis (A B C), each generated periodis (A A B A B C).

3.1.6 Copier

The copier-class makes copies of periods from a sub-pattern. For example, three periods of make-copier(
make-cycle({a b c}, for: 1), repeat: 2, merge: t) wouldbe (A A) (B B) (C C).Note thaten-
tire periods (not individual items) are repeated, so in this example the for: keyword was used to force periods to
be of length one so that each item is repeated by the repeat: count.

3.1.7 Length

The length-class generates periods of a specified length from another pattern. This is similar to using the for:
keyword, but for many patterns, the for: parameter alters the points at which other patterns are generated. For
example, if the palindrome pattern has an elide: pattern parameter, the value will be computed every period. If
there is also a for: parameter with a value of 2, then elide: will be recomputed every 2 items. In contrast, if the
palindrome (without a for: parameter) is embedded in a length pattern with a length of 2, then the periods will all
be of length 2, but the items will come from default periods of the palindrome, and therefore the elide: values
will be recomputed at the beginnings of default palindrome periods.



3.1.8 Window

The window-class groups items from another pattern by using a sliding window. If the skip value is 1, each output
period is formed by dropping the first item of the previous period and appending the next item from the pattern.
The skip value and the output period length can change every period. For a simple example, if the period length is
3 and the skip value is 1, and the input pattern generates the sequence A, B, C, ..., then the output periods will be (A
BC),BCD),(CDE), DEF), ...

3.2 Nested Patterns

Patterns can be nested, that is, you can write patterns of patterns. In general, the next function does not return
patterns. Instead, if the next item in a pattern is a (nested) pattern, next recursively gets the next item of the nested
pattern.

While you might expect that each call to next would advance the top-level pattern to the next item, and descend
recursively if necessary to the inner-most nesting level, this is not how next works. Instead, next remembers the
last top-level item, and if it was a pattern, next continues to generate items from that same inner pattern until the
end of the inner pattern’s period is reached. The next paragraph explains the concept of the period.

3.2.1 Periods

The data returned by a pattern object is structured into logical groups called periods. You can get an entire period
(as a list) by calling next (pattern, t). For example:

set pitch-source = make-cycle(list(c4, d4, e4, f4))
print next(pitch-source, t)

This prints the list (60 62 64 65), which is one period of the cycle.

You can also get explicit markers that delineate periods by calling send (pattern, :next). In this case, the
value returned is either the next item of the pattern, or the symbol +eop+ if the end of a period has been reached.
What determines a period? This is up to the specific pattern class, so see the documentation for specifics. You can
override the "natural" period using the keyword for:, e.g.

set pitch-source = make-cycle(list(c4, d4, e4, f4), for: 3)
print next(pitch-source, t)
print next(pitch-source, t)

This prints the lists (60 62 64) (65 60 62). Notice that these periods just restructure the stream of items
into groups of 3.

Nested patterns are probably easier to understand by example than by specification. Here is a simple nested
pattern of cycles:

set cycle-1 = make-cycle(a b c)

set cycle-2 = make-cycle(x y z)

set cycle-3 = make-cycle(list(cycle-1, cycle-2))
exec dotimes(i, 9, format(t, "~A ", next(cycle-3)))

This will print "A B CX Y Z A B C". Notice that the inner-most cycles cycle-1 and cycle-2 generate a period
of items before the top-level cycle-3 advances to the next pattern.

3.3 Summary of Patterns

Pattern generators are a bit like unit generators in that they represent sequences or streams of values, they can be
combined to create complex computations, they encapsulate state on which the next output depends, and they can
be evaluated incrementally. Patterns produced streams of numbers intended to become parameters for algorithmic
compositions, while unit generators produce samples.



Patterns can serve as parameters to other pattern objects, enabling complex behaviors to run on multiple time
scales. Since patterns are often constructed from lists (e.g. cycle, random, heap, copier, line, palindrome pat-
terns), the output of each pattern is structured into groupings called periods, and pattern generators have parameters
(especially for:) to control or override period lengths. Even period lengths can be controlled by patterns!

4 Score Generation and Manipulation

A common application of pattern generators is to specify parameters for notes. (It should be understood that "notes"
in this context means any Nyquist behavior, whether it represents a conventional note, an abstract sound object, or
even some micro-sound event that is just a low-level component of a hierarchical sound organization. Similarly,
"score" should be taken to mean a specification for a sequence of these "notes.") The score-gen macro establishes
a convention for representing scores and for generating them using patterns.

The timed-seq macro already provides a way to represent a "score" as a list of expressions. We can go a bit
further by specifying that all notes are specified by an alternation of keywords and values, where some keywords
have specific meanings and interpretations. By insisting on this keyword/value representation, we can treat scores
as self-describing data, as we will see below.

To facilitate using patterns to create scores, we introduce the score-gen construct, which looks like a function
but is actually a macro. The main difference is that a macro does not evaluate every parameter immediately, but
instead can operate on parameters as expressions. The basic idea of score-gen is you provide a template for notes
in a score as a set of keywords and values. For example,

set pitch-pattern = make-cycle(list(c4, d4, e4, f4))
score-gen(dur: 0.4, name: quote(my-sound),
pitch: next(pitch-pattern), score-len: 9)

Generates a score of 9 notes as follows:

((0 0 (SCORE-BEGIN-END 0 3.6))
(0 0.4 (MY-SOUND :PITCH 60))
(0.4 0.4 (MY-SOUND :PITCH 62))
(0.8 0.4 (MY-SOUND :PITCH 64))
(1.2 0.4 (MY-SOUND :PITCH 65))
(1.6 0.4 (MY-SOUND :PITCH 60))
(2 0.4 (MY-SOUND :PITCH 62))
(2.4 0.4 (MY-SOUND :PITCH 64))
(2.8 0.4 (MY-SOUND :PITCH 65))
(3.2 0.4 (MY-SOUND :PITCH 60)))

The use of keywords like :PITCH helps to make scores readable and easy to process without specific knowl-
edge of about the functions called in the score. For example, one could write a transpose operation to transform
all the :pitch parameters in a score without having to know that pitch is the first parameter of pluck and the
second parameter of piano-note. Keyword parameters are also used to give flexibility to note specification with
score-gen. Since this approach requires the use of keywords, the next section is a brief explanation of how to
define functions that use keyword parameters.

4.1 Keyword Parameters

Keyword parameters are parameters whose presence is indicated by a special symbol, called a keyword, followed
by the actual parameter. Keyword parameters in SAL have default values that are used if no actual parameter is
provided by the caller of the function.

To specify that a parameter is a keyword parameter, use a keyword symbol (one that ends in a colon) followed
by a default value. For example, here is a function that accepts keyword parameters and invokes the pluck function:



define function k-pluck(pitch: 60, dur: 1)
return pluck(pitch, dur)

Notice that within the body of the function, the actual parameter value for keywords pitch: and dur: are ref-
erenced by writing the keywords without the colons (pitch and dur) as can be seen in the call to pluck. Also,
keyword parameters have default values. Here, they are 60 and 1, respectively.

Now, we can call k-pluck with keyword parameters. A function call would look like:

k-pluck(pitch: ¢3, dur: 3)

Usually, it is best to give keyword parameters useful default values. That way, if a parameter such as dur: is
missing, a reasonable default value (1) can be used automatically. It is never an error to omit a keyword parameter,
but the called function can check to see if a keyword parameter was supplied or not. Because of default values, we
can call k-pluck(pitch: ¢3) with no duration, k-pluck(dur: 3) with only a duration, or even k-pluck()
with no parameters.

4.2 Using score-gen

The score-gen macro computes a score based on keyword parameters. Some keywords have a special meaning,
while others are not interpreted but merely placed in the score. The resulting score can be synthesized using
timed-seq. The form of a call to score-gen is simply:

score-gen(kl: el, k2: e2, ...)

where the k’s are keywords and the e’s are expressions. A score is generated by evaluating the expressions once for
each note and constructing a list of keyword-value pairs. A number of keywords have special interpretations. The
rules for interpreting these parameters will be explained through a set of "How do I ..." questions below.

How many notes will be generated? The keyword parameter score-len: specifies an upper bound on the
number of notes. The keyword score-dur: specifies an upper bound on the starting time of the last note in the
score. (To be more precise, the score-dur: bound is reached when the default starting time of the next note is
greater than or equal to the score-dur: value. This definition is necessary because note times are not strictly
increasing.) When either bound is reached, score generation ends. At least one of these two parameters must
be specified or an error is raised. These keyword parameters are evaluated just once and are not copied into the
parameter lists of generated notes.

What is the duration of generated notes? The keyword dur: defaults to 1 and specifies the nominal duration in
seconds. Since the generated note list is compatible with timed-seq, the starting time and duration (to be precise,
the stretch factor) are not passed as parameters to the notes. Instead, they control the Nyquist environment in which
the note will be evaluated.

What is the start time of a note? The default start time of the first note is zero. Given a note, the default start
time of the next note is the start time plus the inter-onset time, which is given by the ioi: parameter. If no ioi:
parameter is specified, the inter-onset time defaults to the duration, given by dur:. In all cases, the default start
time of a note can be overridden by the keyword parameter time:. So in other words, to get the time of each note,
compute the expression given as (time:). If there is no time: parameter, compute the time of the previous note
plus the value of ioi:, and if there is no ioi:, then use dur:, and if there is no dur:, use 1.

When does the score begin and end? The behavior SCORE-BEGIN-END contains the beginning and ending of the
score (these are used for score manipulations, e.g. when scores are merged, their begin times can be aligned.) When
timed-seq is used to synthesize a score, the SCORE-BEGIN-END marker is not evaluated. The score-gen macro
inserts a "note" of the form (0 0 (SCORE-BEGIN-END begin-time end-time)) at the time given by the begin:
keyword, with begin-time and end-time determined by the begin: and end: keyword parameters, respectively. If
the begin: keyword is not provided, the score begins at zero. If the end: keyword is not provided, the score ends
at the default start time of what would be the next note after the last note in the score (as described in the previous
paragraph). Note: if time: is used to compute note starting times, and these times are not increasing, it is strongly
advised to use end: to specify an end time for the score, because the default end time may be anywhere in the middle
of the generated sequence.
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What function is called to synthesize the note? The name: parameter names the function. Like other parameters,
the value can be any expression, including something like next(fn-name-pattern), allowing function names to be
recomputed for each note. The default value is note.

Can I make parameters depend upon the starting time or the duration of the note? score-gen sets some handy
variables that can be used in expressions that compute parameter values for notes:

o the variable sg:start accesses the start time of the note,

e sg:ioi accesses the inter-onset time,

e sg:dur accesses the duration (stretch factor) of the note,

e sg:count counts how many notes have been computed so far, starting at 0.

The order of computation is: sg:count, then sg:start, then sg:ioi and finally sg:dur, so for example, an
expression to compute sg:dur can depend on sg:ioi.

Can parameters depend on each other? The keyword pre: introduces an expression that is evaluated before
each note, and post: provides an expression to be evaluated after each note. The pre: expression can assign one
or more global variables which are then used in one or more expressions for parameters.

How do I debug score-gen expressions? You can set the trace: parameter to true (t) to enable a print statement
for each generated note.

How can I save scores generated by score-gen that I like? If the keyword parameter save: is set to a symbol,
the global variable named by the symbol is set to the value of the generated sequence. Of course, the value returned
by score-gen is just an ordinary list that can be saved like any other value.

In summary, the following keywords have special interpretations in score-gen: begin:, end:, time:, dur:,
name:, ioi:, trace:, save:, score-len:, score-dur:, pre:, post:. All other keyword parameters are ex-
pressions that are evaluated once for each note and become the parameters of the notes.

S Introduction to Algorithmic Composition

There are many types and approaches to machine-aided composition, which is also called algorithmic composition,
computer-assisted composition, automatic composition, and machine generated music (all of which have varying
shades of meaning depending on the author that uses them and the context).

Some examples of approaches include:

e Use of music notation software, which is arguably computer-assisted, but rarely what we mean by “machine-
aided composition.”

e Cutting and pasting of music materials (notation or audio) in editors can be effective, but leaves all the
decision making to the composer, so again, this is not usually considered to be machine-aided composition.

e Editing macros and other high-level operations enable composers to (sometimes) delegate some musical
decision-making to machines and perform high-level operations on music compositions.

o Algorithmic composition usually refers to simple numerical or symbolic algorithms to generate musical ma-
terial, e.g. mapping the digits of 7 to pitches.

e Procedures + random numbers allow composers to create structures with randomized details.

e Artificial intelligence seeks to model music composition as search, problem solving, knowledge-directed
decisions or optimization.

e Music models attempt to formalize music theory or perhaps particular musical styles to enable examples to
be generated computationally.

e Machine learning typically seeks to learn music models automatically from examples, often using sequence-
learning techniques from other domains such as natural language processing.
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e Constraint solving and search techniques allow composers to describe music in terms of properties or restric-
tions and then use computers to search for solutions that satisfy the composers’ specifications.

The following sections describe a number of approaches that I have found useful. The list is by no means
exhaustive. One thing you will discover is that there are few if any music generation systems that one can simply
pick up and use. Almost every approach and software package offers a framework within which composers can
adjust parameters or provide additional details to produce material which is often just the starting point in producing
a complete piece of music. There is no free lunch!

5.1 Negative Exponential Distribution

Random numbers can be interesting, but what does it mean to be “random” in time? You might think that it would
be useful to make the inter-onset interval (IOI) be a uniform random distribution, but this turns out to be not so
interesting because the resulting sequence or rhythm is a little too predictable.

In the real world, we have random events in time such as atomic decay or something as mundane as the time
points when a yellow car drives by. the inter-arrival time of these random events has a negative exponential distri-
bution, as shown in Figure 6. The figure shows that the pobability of longer and longer intervals is less and less
likely.

Figure 6: The negative exponential distribution.

See “Distributions” in the Nyquist Reference Manual for implementations. (The exponential-dist function
can be used directly to compute ioi: values in score-gen. You might want to code upper and lower bounds to
avoid the extremes of this infinite distribution.) Another way to generate something like a (negative) exponential
distribution is, at every time point (e.g. every sixteenth note or every 10 ms), play a note with some low probability
p. In this approach, IOI is not explicitly computed, but the distribution of IOI’s will approximate the negative
exponential shown in Figure 6.

Yet another way to achieve a negative exponential distribution is to choose time points uniformly within a time
span (e.g. in Nyquist, the expression rrandom() * dur will return a random number in [0, dur).) Then, sort the
time points into increasing order, and you will obtain points where the 101 has a negative exponential distribution.

Nyquist supports many other interesting probability distributions. See “Distributions” in the Nyquist Reference
Manual for details.

5.2 Random Walk

What kinds of pitch sequences create interesting melodies? Melodies are mostly made up of small intervals, but
a uniform random distribution creates many large intervals. Melodies often have fractal properties, with a mix of
mainly small intervals, but occasional larger ones. An interesting idea is to randomly choose a direction (up or
down) and interval size in a way that emphasizes smaller intervals over larger ones. Sometimes, this is called a
“random walk,” as illustrated in Figure 7.
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Figure 7: A random walk in two dimensions (from http://www?2.ess.ucla.edu/ jewitt/images/random.gif).

5.3 Markov Chains

A Markov Chain is a formal model of random sequential processes that is widely used in many fields. A Markov
Chain consists of a set of states (in music, these could be chords, for example). The output of a Markov Chain is
a sequence of states. The probability of making a transition to a state depends only on the previous state. Figure 8
illustrates a Markov Chain.

Figure 8: A Markov Chain for simple chord progressions (from https://luckytoilet.files.wordpress.com/2017/04/3.png).

5.4 Rhythmic Pattern Generation

There are many techniques for rhythmic patterns. An interesting perceptual fact about rhythms is that almost any
rhythm will make a certain amount of musical sense if it has at least two or three sound events, not so many sound
events that we cannot remember the sequence, and the rhythm is repeated. Therefore, a simple but effective “random
rhythm generator” is the following: Decide on a length. Generate this many random Boolean values in sequence.
Make each element of the sequence represent an onset or a rest and play at least several repetitions of the resulting
rhythm. For example, if each O or 1 represents a sixteenth note, and we play a sound on each “1”, a clear structured
rhythm will be heard:
01101110100 01101110100 01101110100 01101110100 ...

5.5 Serialism

At the risk of over-simplifying, serialism arose as an attempt to move beyond the tonal concepts that dominated
Western musical thought through the beginning of the 20th Century. Arnold Schoenberg created his twelve-tone
technique that organized music around “tone rows” which are permutations of the 12 pitch classes of the chromatic
scale (namely, C, C#, D, D#, E, F, F#, G, G#, A, A#, B). Starting with a single permutation, the composer could
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generate new rows through transposition, inversion, and playing the row backwards (called retrograde). Music
created from these sequences tends to be aronal with no favored pitch center or scale. Because of the formal
constraints on pitch selection and operations on tone rows, serialism has been an inspiration for many algorithmic
music compositions.

5.6 Fractals and Nature

Melodic contours are often fractal-like, and composers often use fractal curves to generate music data. Examples
include Larry Austin’s Canadian Coastline, based on the fractal nature of a natural coastline, and John Cage s Atlas
Eclipticalis, based on positions of stars.

5.7 Grammars

Formal grammars, most commonly used in formal descriptions of programming languages, have been applied to
music. Consider the formal grammar:

melody ::= intro middle ending
middle ::= phrase | middle phrase
phrase :=ABCBIACDA

which can be read as: “A melody is an intro followed by a middle followed by and ending. A middle is recursively
defined as either a phrase or a middle followed by a phrase (thus, a middle is one or more phrases), and a phrase is
the sequence A B C B or the sequence A C D A. We haven’t specified yet what is an intro or ending.

Grammars are interesting because they give a compact description of many alternatives, e.g. the the formal
grammar for Java allows for all Java programs, and the music grammar above describes many possibilities as well.
However, grammars give clear constraints-a Nyquist program is rejected by the grammar for Java, and music in the
key of C# cannot be generated by the music grammar example above.

5.8 Pitch and Rhythm Grids

Traditional Western music is based on discrete pitch and time values. We build scales out of half steps that we
often represent with integers, and we divide time into beats and sub-beats. One interesting and useful technique in
algorithmic music is to compute parameters from continuous distributions, but then quantize values to fit pitches
into conventional scales or round times and durations to the nearest sixteenth beat or some other rhythmic grid.

6 Tendency Masks

A problem with algorithmic composition is that the output can become static if the same parameters or probability
distributions are used over and over. At some point, we recognize that even random music has an underlying
probability distribution, so what is random becomes just a confirmation of our expectations.

One way to combat this perception of stasis is to create multi-level structures, e.g. patterns of patterns of
patterns. A more direct way is to simply give the high-level control back to the composer. As early as 1970,
Gottfried Michael Koenig used tendency masks to control the evolution of parameters in time in order to give global
structure and control to algorithmic music composition. Figure 9 illustrates tendency masks for two parameters.
The masks give a range of possible values for parameters. Note that the parameter values can be chosen between
upper and lower bounds, and that the bounds change over time.

7 Summary
We have learned about a variety of approaches to algorithmic music generation. Nyquist supports algorithmic music

generation especially through the score-gen macro, which iteratively evaluates expressions and creates note lists
in the form of Nyquist scores. Nyquist also offers a rich pattern library for generating parameter values. These
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Figure 9: Tendency masks offer a way for composers to retain global control over the evolution of a piece even
when the moment-by-moment details of the piece are generated algorithmically. Here, the vertical axis represents
parameter values and the horizontal axis represents time. The two colored areas represent possible values (to be
randomly selected) for each of two parameters used for music generation.

patterns can be used to implement many ““standard” algorithmic music techniques such as serialism, random walks,
Markov Chains, probability distributions, pitch and rhythmic grids, etc.

We began by learning details of the FFT and Spectral Centroid. The main reason to introduce these topics is
to prepare you to extract spectral centroid data from one sound source and use it to control parameters of music
synthesis. Hopefully, you can combine this sonic control with some higher-level algorithmic generation of sound
events to create an interesting piece. Good luck!
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