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1 Introduction to Frequency Modulation
Frequency modulation occurs naturally. It is rare to hear a completely stable steady pitch. Some percussion instru-
ments are counter-examples, e.g. a piano tone or a tuning fork or a bell, but most instruments and the human voice
tend to have at least some natural frequency change.

1.1 Examples
Common forms of frequency variation in music include:

• Voice inflection, natural jitter, and vibrato in singing.

• Vibrato in instruments. Vibrato is a small and quasi-periodic variation of pitch, often around 6 Hz and
spanning a fraction of a semitone.

• Instrumental effects, e.g. electric guitars sometimes have “whammy bars” that stretch or relax all the strings
to change their pitch. Guitarists can “bend” strings by pushing the string sideways across the fretboard.

• Many tones begin low and come up to pitch.

• Loose vibrating strings go sharp (higher pitch) as they get louder. Loose plucked strings get flatter (lower
pitch) especially during the initial decay.

• The slide trombone, Theremin, voice, violin, etc. create melodies by changing pitch, so melodies on these in-
struments can be thought of as examples of frequency modulation (as opposed to, say, pianos, where melodies
are created by selecting from fixed pitches).

1.2 FM Synthesis
Normally, vibrato is a slow variation created by musicians’ muscles. With electronics, we can increase the vibrato
rate into the audio range, where interesting things happen to the spectrum. The effect is so dramatic, we no longer
refer to it as vibrato but instead call it FM Synthesis. See the reading “FM Synthesis” for a detailed description of
this important technique.

2 Frequency Modulation with Nyquist
From this section on, we assume you have read and studied “FM Synthesis.” Now that you have a grasp of the
theory, let’s use it to make some sound.
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2.1 Basic FM
The basic FM oscillator in Nyquist is the function fmosc. The signature for fmosc is

fmosc(basic-pitch, fm-control [, table [, phase]]).

Let’s break that down:

• basic-pitch is the carrier frequency, expressed in steps. If there is no modulation, this controls the out-
put frequency. Remember this is in steps, so if you put in a number like 440 expecting Hz, you will
actually get step-to-hz(440), which is about 0.9 terahertz1! Use A4 instead, or write something like
hz-to-step(441.0) if you want to specify frequency in Hertz.

• fm-control is the modulator. The amplitude of the modulator controls the depth of modulation—how much
does the frequency deviate from the nominal carrier frequency based on basic-pitch? An amplitude of 1 (the
nominal output of (osc) for example), gives a frequency deviation of ±1. If you studied “FM Synthesis,” you
will realize that gives a very low index of modulation—you probably will not hear anything but a sine tone,
so typically,

– you will scale fm-control by a large number, and

– you will also scale fm-control by some kind of envelope–by varying the depth of modulation, you will
vary the spectrum, which is typical in FM synthesis.

The frequency of fm-control is just the modulation frequency. It is the same as the carrier frequency if the
C:M ratio is 1:1. This is where you control the C:M ratio.

• table is optional and allows you to replace the default sine waveform with any waveform table. The table data
structure is exactly the same one you learned about earlier for use with the osc function.

• phase is also optional and gives the initial phase. Generally, changing the initial phase will not cause any
perceptible changes.

2.2 FM Example in Nyquist
The following plays a characteristic FM sound in Nyquist:

play fmosc(c4, pwl(1, 4000, 1) * osc(c4)) ~ 10

Since the modulation comes from osc(c4), the modulation frequency matches the carrier frequency (given by
fmosc(c4, ...), so the C:M ratio is 1:1. The amplitude of modulation ramps from 0 to 4000, giving an index of
modulation of I = 4000/steptohz(C4) = 15.289. Thus, the spectrum will evolve from a sinusoid to a rich spectrum
with the carrier and around I +1 sidebands, or about 17 harmonics.

3 Behavioral Abstraction
In Nyquist, all functions are subject to transformations. You can think of transformations as additional parameters
to every function, and functions are free to use these additional parameters in any way. The set of transformation
parameters is captured in what is referred to as the transformation environment. (Note that the term environment is
heavily overloaded in computer science. This is yet another usage of the term.)

Behavioral abstraction is the ability of functions to adapt their behavior to the transformation environment.
This environment may contain certain abstract notions, such as loudness, stretching a sound in time, etc. These
notions will mean different things to different functions. For example, an oscillator should produce more periods
of oscillation in order to stretch its output. An envelope, on the other hand, might only change the duration of

1Need we point out this is somewhat higher than the Nyquist rate?
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the sustain portion of the envelope in order to stretch. Stretching a sample could mean resampling it to change its
duration by the appropriate amount.

Thus, transformations in Nyquist are not simply operations on signals. For example, if I want to stretch a note,
it does not make sense to compute the note first and then stretch the signal. Doing so would cause a drop in the
pitch. Instead, a transformation modifies the transformation environment in which the note is computed. Think of
transformations as making requests to functions. It is up to the function to carry out the request. Since the function
is always in complete control, it is possible to perform transformations with “intelligence;” that is, the function
can perform an appropriate transformation, such as maintaining the desired pitch and stretching only the “sustain”
portion of an envelope to obtain a longer note.

3.1 Behaviors
Nyquist sound expressions denote a whole class of behaviors. The specific sound computed by the expression
depends upon the environment. There are a number of transformations, such as stretch and transpose that alter
the environment and hence the behavior.

The most common transformations are shift and stretch, but remember that these do not necessarily denote
simple time shifts or linear stretching: When you play a longer note, you don’t simply stretch the signal! The
behavior concept is critical for music.

3.2 Evaluation Environment
To implement the behavior concept, all Nyquist expressions evaluate within an environment.

The transformation environment is implemented in a simple manner. The environment is simply a set of special
global variables. These variables should not be read directly and should never be set directly by the programmer.
Instead, there are functions to read them, and they are automatically set and restored by transformation operators,
which will be described below. The Nyquist environment includes: starting time, stretch factor, transposition, legato
factor, loudness, sample rates, and more.

3.3 Manipulating the Environment Example
A very simple example of a transformation affecting a behavior uses the stretch operator (~):

pluck(c4) ~ 5

This example can be read as “evaluate pluck in an environment that has been stretched by 5 relative to the current
environment.” Operationally, what happens is that the stretch factor in the environment is multiplied by 5. Then
the expression pluck(c4) is evaluated. The pluck function computes a sound that depends on the duration that in
turn depends on the stretch factor in the environment, so in this case, a 5 second sound is computed. Finally, the
stretch factor in the environment is restored.

3.4 Transformations
In the previous example, we saw that many transformations are relative and can be nested. Stretch does not just set
the stretch factor; instead, it multiplies the stretch factor by a factor, so the final stretch factor in the new environment
is relative to the current one.

Nyquist also has “absolute” transformations that override any existing value in the environment. For example,

function tone2() return osc(c4) ~~ 2

returns a 2 second tone, even if you write:

play tone2() ~ 100 ; 2 second tone

3



because the “absolute stretch” (~~) overrides the stretch operator (~). Even though tone2 is called with a stretch
factor of 100, its absolute stretch transformation overrides the environment and sets it to 2.

Also, note that once a sound is computed, it is immutable. The following use of a global variable to store a
sound is not recommended, but serves to illustrate the immutability aspect of sounds:

mysnd = osc(c4) ; compute sound, duration = 1
play mysnd ~ 2 ; plays duration of 1

The stretch factor of 2 in the second line has no effect because mysnd evaluates to an immutable sound. Transfor-
mations only apply to functions (which we sometimes call behaviors). Transformations do not affect sounds once
they are computed.

Transformations are described in detail in the Nyquist Reference Manual (find “Transformations” in the index).
In practice, the most critical transformations are at (@) and stretch (˜), which control when sounds are computed
and how long they are.

4 Sequential Behavior (seq)
Consider the simple expression:

play seq(my-note(c4, q), my-note(d4, i))

The idea is to create the first note at time 0, and to start the next note when the first one finishes. This is all
accomplished by manipulating the environment. In particular, *warp* is modified so that what is locally time 0 for
the second note is transformed, or warped, to the logical stop time of the first note.

One way to understand this in detail is to imagine how it might be executed: first, *warp* is set to an initial
value that has no effect on time, and my-note(c4, q) is evaluated. A sound is returned and saved. The sound
has an ending time, which in this case will be 1.0 because the duration q is 1.0. This ending time, 1.0, is used
to construct a new *warp* that has the effect of shifting time by 1.0. The second note is evaluated, and will start
at time 1.0. The sound that is returned is now added to the first sound to form a composite sound, whose duration
will be 2.0. Finally, *warp* is restored to its initial value.

Notice that the semantics of seq can be expressed in terms of transformations. To generalize, the operational
rule for seq is: evaluate the first behavior according to the current *warp*. Evaluate each successive behavior with
*warp* modified to shift the new note’s starting time to the ending time of the previous behavior. Restore *warp*
to its original value and return a sound which is the sum of the results.

In the Nyquist implementation, audio samples are only computed when they are needed, and the second part of
the seq is not evaluated until the ending time (called the logical stop time) of the first part. It is still the case that
when the second part is evaluated, it will see *warp* bound to the ending time of the first part.

A language detail: Even though Nyquist defers evaluation of the second part of the seq, the expression can
reference variables according to ordinary Lisp/SAL scope rules. This is because the seq captures the expression in
a closure, which retains all of the variable bindings.

5 Simultaneous Behavior (sim)
Another operator is sim, which invokes multiple behaviors at the same time. For example,

play 0.5 * sim(my-note(c4, q), my-note(d4, i))

will play both notes starting at the same time.
The operational rule for sim is: evaluate each behavior at the current *warp* and return the sum of the results.

(In SAL, the sim function applied to sounds is equivalent to adding them with the infix + operator.
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6 Logical Stop Time
We have seen that the default behavior of seq is to cause sounds to begin at the end of the previous sound in the
sequence. What if we want to play a sequence of short sounds separated by silence? One possibility is to insert
silence (see s-rest), but what if we want to play equally spaced short sounds? We have to know how long each
short sound lasts in order to know how much silence to insert. Or what if sounds have long decays and we want to
space them equally, requiring some overlap?

All of these cases point to an important music concept: We pay special attention to the beginnings of sounds, and
the time interval between these onset times (often called IOI for “Inter-Onset Interval”) is usually more important
than the specific duration of the sound (or note). Thus, spacing notes according to their duration is not really a very
musical idea.

Instead, we can try to separate the concepts of duration and IOI. In music notation, we can write a quarter note,
meaning “play this sound for one beat,” but put a dot over it, meaning “play this sound short, but it still takes a total
of one beat.” (See Figure 1.) It is not too surprising that music notation and theory would have rather sophisticated
concepts regarding the organization of sound in time.

Figure 1: Standard quarter notes nominally fill an entire beat. Staccato quarter notes, indicated by the dots, are
played shorter, but they still occupy a time interval of one beat. The “on” and “off” time of these short passages is
indicated graphically below each staff of notation.

Nyquist incorporates this musical thinking into its representation of sounds. A sound in Nyquist has one start
time, but there are effectively two “stop” times. The signal stop is when the sound samples end. After that point,
the sound is considered to continue forever with value of zero. The logical stop marks the “musical” or “rhythmic”
end of the sound. If there is a sound after it (e.g. in a sequence computed by seq), the next sound begins at this
logical stop time of the sound.

The logical stop is usually the signal stop by default, but you can change it with the set-logical-stop
function. For example, the following will play a sequence of 3 plucked-string sounds with durations of 2 seconds
each, but the IOI, that is, the time between notes, will be only 1 second.

play seq(set-logical-stop(pluck(c4) ~ 2, 1)
set-logical-stop(pluck(c4) ~ 2, 1),
set-logical-stop(pluck(c4) ~ 2, 1))

7 Scores in Nyquist
Scores in Nyquist indicate “sound events,” which consist of functions to call and parameters to pass to them. For
each sound event there is also a start time and a “duration,” which is really a Nyquist stretch factor. When you
render a score into a sound (usually by calling timed-seq or executing the function sound-play), Each sound
event is evaluated by adjusting the environment according to the time and duration as if you wrote

sound-event(parameters) ~ duration @ time
The resulting sounds are then summed to form a single sound.
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8 Summary
In this unit, we covered frequency modulation and FM synthesis. Frequency modulation refers to anything that
changes pitch within a sound. Frequency modulation at audio rates can give rise to many partials, making FM
Synthesis a practical, efficient, and versatile method of generating complex evolving sounds with a few simple
control parameters.

All Nyquist sounds are computed by behaviors in an environment that can be modified with transformations.
Functions describe behaviors. Each behavior can have explicit parameters as well as implicit environment values,
so behaviors represent classes of sounds (e.g. piano tones), and each instance of a behavior can be different. Being
“different” includes having different start times and durations, and some special constructs in Nyquist, such as
sim, seq, at (@) and shift (˜) use the environment to organize sounds in time. These concepts are also used to
implement scores in Nyquist.
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