
Introduction to Computer Music
Week 2

Version 2, revised 3 Sep 2018

Roger B. Dannenberg

Topics Discussed: Unit Generators, Implementation, Functional Programming,
Wavetable Synthesis, Scores in Nyquist, Score Manipulation

1 Unit Generators
In the 1950’s Max Mathews conceived of sound synthesis by software using networks of modules he called unit gen-
erators. A unit generator Unit generators (sometimes called ugens) are basic building blocks for signal processing
in many computer music programming languages.

Unit generators are used to construct synthesis and signal processing algorithms in software. For example, the
simple unit generator osc generates a sinusoidal waveform at a fixed frequency. env generates an "envelope" to
control amplitude. Multiplication of two signals can be achieved with a mult unit generator (created with the *
operator), so osc(c4) * env(0.01, 0.02, 0.1, 1, 0.9, 0.8) creates a sinusoid with amplitude that varies
according to an envelope.

Figure 1 illustrates some unit generators. Lines represent audio signals, control signals and numbers.

Figure 1: Some examples of Unit Generators.

In many languages, unit generators can be thought of as interconnected objects that pass samples from object
to object, performing calculations on them. In Nyquist, we think of unit generators as functions with sounds as
inputs and outputs. Semantically, this is an accurate view, but since sounds can be very large (typically about
10MB/minute), Nyquist uses a clever implementation based on incremental lazy evaluation so that sounds rarely
exist as complete arrays of samples. Instead, sounds are typically computed in small chunks that are "consumed"
by other unit generators and quickly deleted to conserve memory.

Figure 2 shows how unit generators can be combined. Outputs from an oscillator and an envelope generator
serve as inputs to the multiply unit generator in this figure.

Figure 3 shows how the "circuit diagram" or "signal flow diagram" notation used in Figure 2 relates to the
functional notation of Nyquist. As you can see, whereever there is output from one unit generator to the input of
another as shown on the left, we can express that as nested function calls as shown in the expression on the right.

1

Figure 2: Combining Unit Generator.

Figure 3: Unit Generators in Nyquist.

2

1.1 Some Basic Unit Generators
The osc function generates a sound using a table-lookup oscillator. There are a number of optional parameters, but
the default is to compute a sinusoid with an amplitude of 1.0. The parameter 60 designates a pitch of middle C.
(Pitch specification will be described in greater detail later.) The result of the osc function is a sound. To hear a
sound, you must use the play command, which plays the file through the machine’s D/A converters. E.g. you can
write play osc(c4) to play a sine tone.

It is often convenient to construct signals in Nyquist using a list of (time, value) breakpoints which are linearly
interpolated to form a smooth signal. The function pwl is a versatile unit generator to create Piece-Wise Linear
(PWL) signals and will be described in more detail below.

An envelope constructed by pwl is applied to another sound by multiplication using the multiply (*) operator.
For example, you can make the simple sine tone sound smoother by giving it an envelope:

play osc(c4) * pwl(0.03, 1, 0.8, 1, 1)

While this example shows a smooth envelope multiplied by an audio signal, you can also multiply audio signals
to achieve what is often called ring modulation. For example:

play osc(c4) * osc(g4)

1.2 Evaluation
Normally, Nyquist expressions (whether written in SAL or Lisp syntax) evaluate their parameters, then apply the
function. If we write f(a, b), Nyquist will evaluate a and b, then pass the resulting values to function f.

Sounds are different. If Nyquist evaluated sounds immediately, they could be huge. Even something as simple
as multiply could require memory for two huge input sounds and one equally huge output sound. Multiplying two
10-minute sounds would require 30 minutes’ worth of memory, or about 300MB. This might not be a problem, but
what happens if you are working with multi-channel audio, longer sounds, or more parameters?

To avoid storing huge values in memory, Nyquist uses lazy evaluation. Sounds are more like promises to deliver
samples when asked, or you can think of a sound as an object with the potential to compute samples. Samples
are computed only when they are needed. Nyquist Sounds can contain either samples or the potential to deliver
samples, or some combination.

1.3 Unit Generator Implementation
What is inside a Unit Generator and how do we access it? If sounds have the potential to deliver audio samples
on demand, sounds must encapsulate some information, so sounds in Nyquist are basically represented by the unit
generators that produce them. If a unit generator has inputs, the sound (represented by a unit generator) will also
have references to those inputs. Unit generators are implemented as objects that contain internal state such as the
phase and frequency of an oscillator. This state is used to produce samples when the unit generator is called upon.

Although objects are used in the implementation, programs in Nyquist do not have access to the internal state of
these objects. You can pass sounds as arguments to other unit generator functions and you can play sounds or write
sounds to files, but you cannot access or modify these sound objects. Thus, it is more correct to think of sounds as
values rather than objects. "Object" implies state and the possibility that the state can change. In contrast, a sound in
Nyquist represents a long stream of samples that will eventually be computed and whose values are predetermined
and immutable.

Other languages often expose unit generators as mutable objects and expose connections between unit gener-
ators as "patches" that can be modified. In this model, sound is computed by making a pass over the graph of
interconnected unit generators, computing either one sample or a small block of samples. By making repeated
passes over the graph, sound is incrementally computed.

While this incremental block-by-block computation sounds efficient (and it is), this is exactly what happens
with Nyquist, at least in typical applications. In Nyquist, the play command demands a block of samples, and
all the Nyquist sounds do some computation to produce the samples, but they are "lazy" so they only compute
incrementally. In most cases, intermediate results are all computed incrementally, used, and then freed quickly so
that the total memory requirements are modest.

3

2 Storing Sounds or Not Storing Sounds
If you write

play sound-expression

then sound-expression can be evaluated incrementally and after playing the samples, there is no way to access them,
so Nyquist is able to free the sample memory immediately. The entire sound is never actually present in memory at
once.

On the other hand, if you write:

set var = sound-expression

then initially var will just be a reference to an object with the potential to compute samples. However, if you
play var, the samples must be computed. And since var retains a reference to the samples, they cannot be
deleted. Therefore, as the sound plays, the samples will build up in memory.

In general, you should never assign sounds to global variables because this will prevent Nyquist from efficiently
freeing the samples.

2.1 Functional Programming in Nyquist
Programs are expressions!

As much as possible, Nyquist programs should be constructed in terms of functions and values rather than
variables and assignment statements.

Avoid sequences of statements and use nested expressions instead. Compose functions to get complex behaviors
rather than performing sequential steps. An example of composing a nested expression is:

f(g(x), h(x))

An exception is this: Assigning expressions to local variables can make programs easier to read by keeping
expressions shorter and simpler. However, you should only assign values to local variables once. For example, the
previous nested expression could be expanded using local variables as follows (in SAL):

;; rewrite exec f(g(x), h(x))
begin with gg, hh ;; local variables

set gg = g(x)
set hh = h(x)
exec f(gg, hh)

end

2.2 Eliminating Global Variables
What if you want to use the same sound twice? Wouldn’t you save it in a variable?

Generally, this is a bad idea, because, as mentioned before, storing a sound in a variable can cause Nyquist
to compute the sound and keep it in memory. There are other technical reasons not to store sounds in variables –
mainly, sounds have an internal start time, and sounds are immutable, so if you compute a sound at time zero and
store it in a variable, then try to use it later, you will have to write some extra code to derive a new sound at the
desired starting time.

Instead of using global variables, you should generally use (global) functions. Here is an example of something
to avoid:

;; this is NOT GOOD STYLE
set mysound = pluck(c4)
;; attempt to play mysound twice
;; this expression has problems but it might work
play seq(mysound, mysound)

4

Instead, you should write something like this:

;; this is GOOD STYLE
function mysound() return pluck(c4)
play seq(mysound(), mysound())

Now, mysound is a function that computes samples rather than storing them. You could complain that now mysound
will be computed twice and in fact some randomness is involved so the second sound will not be identical to the
first, but this version is preferred because it is more memory efficient and more "functional."

3 Waveforms
Our next example will be presented in several steps. The goal is to create a sound using a wavetable consisting of
several harmonics as opposed to a simple sinusoid. We begin with an explanation of harmonics. Then, in order to
build a table, we will use a function that adds harmonics to form a wavetable.

3.1 Terminology – Harmonics, etc
The shape of a wave is directly related to its spectral content, or the particular frequencies, amplitudes and phases of
its components. Spectral content is the primary factor in our perception of timbre or tone color. We are familiar with
the fact that white light, when properly refracted, can be broken down into component colors, as in the rainbow. So
too with a complex sound wave, which is the composite shape of multiple frequencies.

So far, we have made several references to sine waves, so called because they follow the plotted shape of the
mathematical sine function. A perfect sine wave or its cosine cousin will produce a single frequency known as the
fundamental. Once any deviation is introduced into the sinus shape (but not its basic period), other frequencies,
known as harmonic partials are produced.

Partials are any additional frequencies but are not necessarily harmonic. Harmonics or harmonic partials are
integer (whole number) multiples of the fundamental frequency (f) (1f, 2f, 3f, 4f. . .). Overtones refers to any
partials above the fundamental. For convention’s sake, we usually refer to the fundamental as partial #1. The first
few harmonic partials are the fundamental frequency, octave above, octave plus perfect fifth above, 2 octaves above,
two octaves and a major 3rd, two octaves and a major fifth, as pictured in Figure 4 for the pitch "A." After the eighth
partial, the pitches begin to grow ever closer and do not necessarily correspond closely to equal-tempered pitches,
as shown in the chart. In fact, even the fifths and thirds are slightly off their equal-tempered frequencies. You may
note that the first few pitches correspond to the harmonic nodes of a violin (or any vibrating) string.

Figure 4: Relating harmonics to musical pitches.

3.2 Creating a Waveform by Summing Harmonics
In the example below, the function mkwave calls upon build-harmonic to generate a total of four harmonics with
amplitudes 0.5, 0.25, 0.125, and 0.0625. These are scaled and added (using +) to create a waveform which is bound
temporarily to *table*.

5

A complete Nyquist waveform is a list consisting of a sound, a pitch, and T, indicating a periodic waveform.
The pitch gives the nominal pitch of the sound. (This is implicit in a single cycle wave table, but a sampled sound
may have many periods of the fundamental.) Pitch is expressed in half-steps, where middle C is 60 steps, as in
MIDI pitch numbers. The list of sound, pitch, and T is formed in the last line of mkwave: since build-harmonic
computes signals with a duration of one second, the fundamental is 1 Hz, and the hz-to-step function converts to
pitch (in units of steps) as required.

define function mkwave()
begin

set *table* = 0.5 * build-harmonic(1, 2048) +
0.25 * build-harmonic(2, 2048) +
0.125 * build-harmonic(3, 2048) +
0.0625 * build-harmonic(4, 2048)

set *table* = list(*table*, hz-to-step(1.0), #t)
end

Now that we have defined a function, the last step of this example is to build the wave. The following code calls
mkwave, whihc sets *mkwave* as a side effect:

exec mkwave()

3.3 Wavetable Variables
When Nyquist starts, several waveforms are created and stored in global variables for convenience. They are:
sine-table, *saw-table*, and *tri-table*, implementing sinusoid, sawtooth, and triangle waves, respec-
tively. The variable *table* is initialized to *sine-table*, and it is *table* that forms the default wave table
for many Nyquist oscillator behaviors. If you want a proper, band-limited waveform, you should construct it your-
self, but if you do not understand this sentence and/or you do not mind a bit of aliasing, give *saw-table* and
tri-table a try.

Note that in Lisp and SAL, global variables often start and end with asterisks (*). These are not special syntax,
they just happen to be legal characters for names, and their use is purely a convention. As an aside, it is the
possibility of using "*", "+" and "-" in variables that forces SAL to require spaces around operators. "a * b" is an
expression using multiplication, while "a*b" is simply a variable.

3.4 Using Waveforms
Now you know that *table* is a global variable, and if you set it, osc will use it:

exec mkwave() ;; defined above
play osc(c4)

This simple approach (setting *table*) is fine if you want to use the same waveform all the time, but in most
cases, you will want to compute or select a waveform, use it for one sound, and then compute or select another
waveform for the next sound. Using the global default waveform *table* is awkward.

A better way is to pass the waveform directly to osc. Here is an example to illustrate:

;; redefine mkwave to set *mytable* instead of *table*
define function mkwave()

begin
set *mytable* = 0.5 * build-harmonic(1, 2048) +

0.25 * build-harmonic(2, 2048) +
0.125 * build-harmonic(3, 2048) +
0.0625 * build-harmonic(4, 2048)

set *mytable* = list(*mytable*, hz-to-step(1.0), #t)
end

6

exec mkwave() ;; run the code to build *mytable*

play osc(c4, 1.0, *mytable*) ;; use *mytable*

;; note that osc(c4, 1.0) will still generate a sine tone
;; because the default *table* is still *sine-table*

Now, you should be thinking "wait a minute, you said to avoid setting global variables to sounds, and now you are
doing just that with these waveform examples. What a hypocrite!" Waveforms are a bit special because they are

• typically short so they do not claim much memory,

• typically used many times, so there can be significant savings by computing them once and saving them,

• not used directly as sounds but only as parameters to oscillators.

You do not have to save waveforms in variables, but it is common practice, in spite of the general advice to keep
sounds out of global variables.

4 Piece-wise Linear Functions: pwl
It is often convenient to construct signals in Nyquist using a list of (time, value) breakpoints which are linearly
interpolated to form a smooth signal. The pwl function takes a list of parameters which denote (time, value) pairs.
There is an implicit initial (time, value) pair of (0, 0), and an implicit final value of 0. There should always be an
odd number of parameters, since the final value (but not the final time) is implicit. Thus, the general form of pwl
looks like:

pwl(t1, v1, t2, v2, . . . , tn)

and this results in a signal as shown in Figure 5.

Figure 5: Piece-wise Linear Functions.

Here are some examples of pwl:

; symmetric rise to 10 (at time 1) and fall back to 0 (at time 2):
;
pwl(1, 10, 2)

; a square pulse of height 10 and duration 5.
; Note that the first pair (0, 10) overrides the default initial
; point of (0, 0). Also, there are two points specified at time 5:
; (5, 10) and (5, 0). (The last 0 is implicit). The conflict is
; automatically resolved by pushing the (5, 10) breakpoint back to
; the previous sample, so the actual time will be 5 - 1/sr, where

7

; sr is the sample rate.
;
pwl(0, 10, 5, 10, 5)

; a constant function with the value zero over the time interval
; 0 to 3.5. This is a very degenerate form of pwl. Recall that there
; is an implicit initial point at (0, 0) and a final implicit value of
; 0, so this is really specifying two breakpoints: (0, 0) and (3.5, 0):
;
pwl(3.5)

; a linear ramp from 0 to 10 and duration 1.
; Note the ramp returns to zero at time 1. As with the square pulse
; above, the breakpoint (1, 10) is pushed back to the previous sample.
;
pwl(1, 10, 1)

; If you really want a linear ramp to reach its final value at the
; specified time, you need to make a signal that is one sample longer.
; The RAMP function does this:
;
ramp(10) ; ramp from 0 to 10 with duration 1 + one sample period
;
; RAMP is based on PWL; it is defined in nyquist.lsp.
;

4.1 Variants of pwl
Sometimes, you want a signal that does not start at zero or end at zero. There is also the option of interpolating
between points with exponential curves instead of linear interpolation. There is also the option of specifying time
intervals rather than absolute times. These options lead to many variants, for example:

pwlv(v0, t1, v1, t2, v2, . . . , tn, vn) – "v" for "value first" is used for signals with non-zero starting and
ending points

pwev(v1, t2, l2, . . . , tn, vn) – exponential interpolation, vi > 0
pwlr(i1, v1, i2, v2, . . . , in) – relative intervals rather than absolute times

See the reference manual for more variants and combinations.

4.2 The Envelope Function: env
Envelopes created by env are a special case of the more general piece-wise linear functions created by pwl. The
form of env is

env(t1, t2, t4, l1, l2, l3, dur)

(duration given by dur is optional). One advantage of env over pwl is that env allows you to give fixed "attack" and
"decay" times that do not stretch with duration. In contrast, the default behavior for pwl is to stretch each segment
in proportion when the duration changes. (We have not really discussed duration in Nyquist, but we will get there
later.)

5 Basic Wavetable Synthesis
Now, you have seen examples of using the oscillator function (or unit generator) osc to make tones and various
functions (unit generators) to make envelopes or smooth control signals. All we need to do is multiply them together

8

Figure 6: Envelope function env.

to get tones with smooth onsets and decays. Here is an example function to play a "note":

; env-note produces an enveloped note. The duration
; defaults to 1.0, but stretch can be used to change the duration.
; Uses mkwave, second version defined above, to create *mytable*.

exec mkwave() ;; run the code to build *mytable*

function env-note(p)
return osc(p, 1.0, *mytable*) *

env(0.05, 0.1, 0.5, 1.0, 0.5, 0.4)

; try it out:
;
play env-note(c4)

This is a basic synthesis algorithm called wavetable synthesis. The advantages are:

• simplicity – one oscillator, one envelope,

• efficiency – oscillator samples are generated by fast table lookup and (usually) linear interpolation,

• direct control – you can specify the desired envelope and pitch

Disadvantages are:

• the spectrum (strength of harmonics) does not change with pitch or time as in most acoustic instruments.

Often filters are added to change the spectrum over time, and we will see many other synthesis algorithms and
variations of wavetable synthesis to overcome this problem.

6 Introduction to Scores
So far, we have seen how simple functions can be used in Nyquist to create individual sound events. We prefer this
term to notes. While a sound event might be described as a note, the term note usually implies a single musical tone
with a well-defined pitch. A note is conventionally described by:

• pitch – from low (bass) to high,

• starting time (notes begin and end),

9

• duration – how long is the note,

• loudness – sometimes called dynamics,

• timbre – everything else such as the instrument or sound quality, softness, harshness, noise, vowel sound,
etc.)

while sound event captures a much broader range of possible sounds). A sound event can have:

• pitch, but may be unpitched noise or combinations,

• time – sound events begin and end,

• duration – how long is the event,

• loudness – also known as dynamics,

• potentially many evolving qualities.

Now, we consider how to organize sound events in time using scores in Nyquist. What is a score? Authors write
books. Composers write scores. Figure 7 illustrates a conventional score. A score is basically a graphical display of
music intended for conductors and performers. Usually, scores display a set of notes including their pitches, timing,
instruments, and dynamics. In computer music, we define score to include computer readable representations of
sets of notes or sound events.

Figure 7: A score written by Mozart.

6.1 Terminology – Pitch
Musical scales are built from two-sizes of pitch intervals: whole steps and half steps, where a whole step represents
about a 12 percent change in frequency, and a half step is about a 6 percent change. A whole step is exactly two half
steps. Therefore the basic unit in Western music is the half step, but this is a bit wordy, so in Nyquist, we call these
steps. (Physicists have the unit Hertz to denote "cycles per second." Wouldn’t it be great if we had a special name to
denote half-steps? How about the Bach since J. S. Bach’s Well-Tempered Clavier is a landmark in the development
of the fixed-size half step, or the Schoenberg, honoring Arnold’s development of 12-tone music. Wouldn’t it be cool
to say 440 Hertz is 69 Bachs? Or to argue whether it’s "Bach" or "Bachs"? But I digress)

Since Western music more-or-less uses integer numbers of half-steps for pitches, we represent pitches with
integers. Middle C (ISO C4) is arbitrarily represented by 60. Nyquist pre-defines a number of convenient variables
to represent pitches symbolically. We have c4 = 60, cs4 (C# or C-sharp) = 61, cf4 (Cb or C-flat) = 59, b3 (B

10

natural, third octave) = 59, bs3 (B# or B-sharp, 3rd octave) = 60, etc. Note: In Nyquist, we can use non-integers to
denote detuned or microtonal pitches: 60.5 is a quarter step above 60 (C4).

Some other useful facts: Steps are logarithms of frequency, and frequency doubles every 12 steps. Doubling
frequency (or halving) is called an interval of an “octave.”

6.2 Lists
Scores are built on lists, so let’s learn about lists.

6.2.1 Lists in Nyquist

Lists in Nyquist are represented as standard singly-linked lists. Every element cell in the list contains a link to the
value and a link to the next element. The last element links to nil, which can be viewed as pointing to an empty list.
Nyquist uses dynamic typing so that lists can contain any types of elements or any mixture of types; types are not
explicitly declared before they are used. Also, a list can have nested lists within it, which means you can make any
binary tree structure through arbitrary nesting of lists.

Figure 8: Lists in Nyquist.

6.2.2 Notation

Although we can manipulate pointers directly to construct lists, this is frowned upon. Instead, we simply write
expressions for lists. In SAL, we use curly brace notations for literal lists, e.g. {a b c}. Note that the three
elements here are literal symbols, not variables (no evaluation takes place, so these symbols denote themselves, not
the values of variables named by the symbols). To construct a list from variables, we call the list function with an
arbitrary number of parameters, which are the list elements, e.g. list(a, b, c). These parameters are evaluated
as expressions in the normal way and the values of these expressions become list elements.

6.2.3 Literals, Variables, Quoting, Cons

Consider the following:

set a = 1, b = 2, c = 3
print {a b c}

This prints: {a b c}. Why? Remember that the brace notation {} does not evaluate anything, so in this case, a
list of the symbols a, b and c is formed. To make a list of the values of a, b and c, use list, which evaluates its
arguments:

print list(a, b, c)

This prints: {1 2 3}.
What about numbers? Consider

print list(1, 2, 3)

This prints: {1 2 3}. Why? Because numbers are evaluated immediately by the Nyquist (SAL or Lisp) interpreter
as the numbers are read. They become either integers (known as type FIXNUM) or floating point numbers (known
as type FLONUM).

What if you want to use list to construct a list of symbols?

11

print list(quote(a), quote(b), quote(c))

This prints: {a b c}. The quote() form can enclose any expression, but typically just a symbol. The quote()
form returns the symbol without evaluation.

If you want to add an element to a list, there is a special function, cons:

print cons(a, {b})

This prints: {1 b}. Study this carefully; the first argument becomes the first element of a new list. The elements of
the second argument (a list) form the remaining elements of the new list.

In contrast, here is what happens with list:

print list(a, {b c d})

This prints: {1 {b c d}}. Study this carefully too; the first argument becomes the first element of a new list. The
second argument becomes the second element of the new list, so the new list has two elements.

7 Scores
In Nyquist, scores are represented by lists of data. The form of a Nyquist score is the following:

{ sound-event-1
sound-event-2
...
sound-event-n }

where a sound event is also a list consisting of the event time, duration, and an expression that can be evaluated to
compute the event. The expression, when evaluated, must return a sound:

{ {time-1 dur-1 expression-1}
{time-2 dur-2 expression-2}
...
{time-n dur-n expression-n} }

and where each expression consists of a function name (sometimes called the instrument and a list of keyword-value
style parameters:

{ {time-1 dur-1 {instrument-1 pitch: 60}}
{time-2 dur-2 {instrument-2 pitch: 62}}
...
{time-n dur-n {instrument-3 pitch: 62 vel: 100}} }

Here is an example score:

{ {0 1 {note pitch: 60 vel: 100}}
{1 1 {note pitch: 62 vel: 110}}
{2 1 {note pitch: 64 vel: 120}} }

Important things to note (pardon the pun) are:

• Scores are data. You can compute scores using by writing code and using the list construction functions from
the previous section (and see the reference manual for many more).

• Expressions in scores are lists, not SAL expressions. The first element of the list is the function to call. The
remaining elements form the parameter list.

• Expressions use keyword-style parameters, never positional parameters. The rationale is that keywords label
the values, allowing us to pass the same score data to different instruments, which may implement some
keywords, ignore others, and provide default values for missing keywords.

12

• keyword parameters also allow us to treat scores as data. For example, Nyquist has a built-in function to find
all the pitch: parameters and transpose them. If positional parameters were used, the transpose function
would have to have information about each instrument function to find the pitch values (if any). Keyword
parameters are more "self-defining."

7.1 The score-begin-end "instrument" Event
Sometimes it is convenient to give the entire score a begin time and an end time because the "logical" time span of
a score may include some silence. This information can be useful when splicing scores together. To indicate start
and end times of the score, insert a "sound event" of the form {0 0 {score-begin-end 1.2 6}}. In this case,
the score occupies the time period from 1.2 to 6 seconds.

For example, if we want the previous score, which nominally ends at time 3 to contain an extra second of silence
at the end, we can specify the time span of the score is from 0 to 4 as follows:

{ {0 0 {score-begin-end 0 4}}
{0 1 {note pitch: 60 vel: 100}}
{1 1 {note pitch: 62 vel: 110}}
{2 1 {note pitch: 64 vel: 120}} }

7.2 Playing a Score
To interpret a score and produce a sound, we use the timed-seq() function. The following plays the previous
score:

set myscore = {
{0 0 {score-begin-end 0 4}}
{0 1 {note pitch: 60 vel: 100}}
{1 1 {note pitch: 62 vel: 110}}
{2 1 {note pitch: 64 vel: 120}} }

play timed-seq(myscore)

7.3 Making an Instrument
Now you know all you need to know to make scores. The previous example will work because note is a built-in
function in Nyquist that uses a built-in piano synthesizer. But it might be helpful to see a custom "instrument"
definition, making the connection between scores and the wavetable synthesis examples we saw earlier. In the next
example, we define a new instrument function that calls on our existing env-note instrument. The reason for
making a new function to be our "instrument" is we want to use keyword parameters. Then, we modify myscore
to use myinstr. .

variable *mytable* ;; declaration avoids parser warnings

function mkwave()
begin

set *mytable* = 0.5 * build-harmonic(1, 2048) +
0.25 * build-harmonic(2, 2048) +
0.125 * build-harmonic(3, 2048) +
0.0625 * build-harmonic(4, 2048)

set *mytable* = list(*mytable*, hz-to-step(1.0), #t)
end

exec mkwave()

function env-note(p)

13

return osc(p, 1.0, *mytable*) *
env(0.05, 0.1, 0.5, 1.0, 0.5, 0.4)

;; define the "instrument" myinstr that uses keyword parameters
;; this is just a stub, env-note() does most of the work...
function myinstr(pitch: 60, vel: 100)

return env-note(pitch) * vel-to-linear(vel)

set myscore = {
{0 0 {score-begin-end 0 4}}
{0 1 {myinstr pitch: 60 vel: 50}}
{1 1 {myinstr pitch: 62 vel: 70}}
{2 1 {myinstr pitch: 64 vel: 120}} }

play timed-seq(myscore)

Note that in myinstr we scale the amplitude of the output by vel-to-linear(vel) to get some loudness control.
"vel" is short for "velocity" which refers to the velocity of piano keys – higher numbers mean faster which means
louder. The "vel" scale is nominally 1 to 127 (as in the MIDI standard) and vel-to-linear() converts this to a
scale factor. We will learn more about amplitude later.

8 Summary
Now you should know how to build a simple wavetable instrument with the waveform consisting of any set of har-
monics and with an arbitrary envelope controlled by pwl or env. You can also write or compute scores containing
many instances of your instrument function organized in time, and you can synthesize the score using timed-seq.
You might experiment by creating different waveforms, different envelopes, using non-integer pitches for micro-
tuning, or notes overlapping in time to create chords or clusters.

9 Acknowledgments
Thanks to Sai Samarth and Shuqi Dai for editing assistance.

Portions of this work are taken almost verbatim from Music and Computers, A Theoretical and Historical
Approach (http://sites.music.columbia.edu/cmc/MusicAndComputers/) by Phil Burk, Larry Polansky,
Douglas Repetto, Mary Robert, and Dan Rockmore. Other portions are taken almost verbatim from Introduction
to Computer Music: Volume One (http://www.indiana.edu/~eemusic/etext/toc.shtml) by Jeffrey Hass.
I would like to thank these authors for generously sharing their work and knowledge.

14

http://sites.music.columbia.edu/cmc/MusicAndComputers/
http://www.indiana.edu/~eemusic/etext/toc.shtml

	Unit Generators
	Some Basic Unit Generators
	Evaluation
	Unit Generator Implementation

	Storing Sounds or Not Storing Sounds
	Functional Programming in Nyquist
	Eliminating Global Variables

	Waveforms
	Terminology – Harmonics, etc
	Creating a Waveform by Summing Harmonics
	Wavetable Variables
	Using Waveforms

	Piece-wise Linear Functions: pwl
	Variants of pwl
	The Envelope Function: env

	Basic Wavetable Synthesis
	Introduction to Scores
	Terminology – Pitch
	Lists
	Lists in Nyquist
	Notation
	Literals, Variables, Quoting, Cons

	Scores
	The score-begin-end "instrument" Event
	Playing a Score
	Making an Instrument

	Summary
	Acknowledgments

