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1 Additive Synthesis and Table Lookup Synthesis
Previously, we considered physical models which simulate physical systems from which we get vibration and sound.
We saw that these are models and not necessarily even realistic simulations. Therefore, the approach is sometimes
called physics-inspired or physics-based modeling. In contrast, we can think about sound in more perceptual terms:
What do we hear? And how can we create sounds that contain acoustic stimuli to create desired impressions on
the listener? Your first reaction might be that our hearing is so good, the only way to create the impression of a
particular sound is to actually make that exact sound. But we know, for example, that we are not very sensitive to
phase. We can scramble the phase in a signal and barely notice the difference. This leads to the idea that we can
recreate the magnitude spectrum of a desired sound, perhaps without even knowing how the sound was created or
knowing much about the details of the sound in the time domain.

This approach is sometimes called spectral modeling and it is a powerful alternative to physical modeling. While
physical modeling requires us to understand something about the sound source, spectral modeling requires us to
understand the sound content. We can often just measure and manipulate the spectra of desired sounds, giving us
an approach that is simple to implement and relatively easy to control. In this section, we consider variations on
spectral modeling, from additive synthesis to spectral interpolation.

1.1 Additive Synthesis
Additive synthesis usually means the summation of sinusoids to create complex sounds. In this approach, every par-
tial has independent frequency and amplitude, giving unlimited freedom (according to what we know about Fourier
analysis and synthesis) to create any sound. Earlier, we studied analysis/synthesis systems such as McAuley-
Quatieri (MQ) and Spectral Modeling Synthesis (SMS) showing that analysis and synthesis are possible. We also
learned that parametric control is somewhat limited. For example, time-stretching is possible, but more musical con-
trol parameters such as articulation, formant frequencies and vibrato do not map directly to any additive synthesis
parameters.

1.2 Table-Lookup Synthesis
If we are willing to limit sinusoidal (partial) frequencies to harmonics and work with a fixed waveform shape, then
we can save a lot of computation by creating a table containing one period of the periodic waveform. Usually, the
table is oversampled (the sample rate is much higher than twice that of the highest harmonic) so that inexpensive
linear interpolation gives good results. By stepping through the table by a variable increment and performing
linear interpolation between neighboring samples, we can get frequency control. A simple multiplication provides
amplitude control.
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Here is a software implementation of a table-lookup oscillator. It computes BLOCK_SIZE samples every time
osc is called. In a real implementation, we would keep the table and current phase variables in a structure or
object so that we could avoid these as global variables and have more than one oscillator instance. This code does
not implement amplitude control, so the output should be multiplied by an amplitude envelope.

float table[513] = { ... some waveform ... };
double phase = 0.0;

void osc(double hz, double amp, float table[], float out[]) {
double incr = hz * 512 / sample_rate;
for (int i = 0; i < BLOCK_SIZE; i++) {

int iphase = floor(phase);
double x1 = table[iphase];
double y = x1 + (phase – iphase) * (table[iphase+1] – x1);
out[i] = y * amp;
phase += incr;
if (phase > 512) phase = phase - 512;

}
}

Table-lookup oscillators have two basic parameters: frequency and amplitude, and otherwise they are limited
to a fixed wave shape, but often table-lookup oscillators can be combined with filters or other effects for additional
control and spectral variation.

2 Spectral Interpolation Synthesis
One simple idea to introduce spectral variation into table-lookup oscillators is to use two tables and interpolate
between them, as shown in Figure 1. With no constraints, this could lead to phase cancellation and unpredictable
results, but if the phases of harmonics are identical in both tables, and if the tables are accessed at the same offset
(i.e. index or phase), then when we interpolate between tables, we are also interpolating between the magnitude
spectra of the two tables. This is interesting! With interpolation between tables, we can create any smoothly varying
harmonic spectrum.

Figure 1: Basic Spectral Interpolation. Phase is incremented after each sample to scan through tables as in a simple
table-lookup oscillator, but here, the phase is used for two table lookups, and the output is an interpolation between
Table1 and Table2.

There are some commercial synthesizers that use a 2-D joystick to control real-time interpolation between
4 spectra. This can be an interesting control strategy and is related to using filters to modify spectra—in both
cases, you get a low dimensional (1-D cutoff frequency or 2-D interpolation) control space with which to vary the
spectrum.
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2.1 Time-Varying Spectrum
Perhaps more interesting (or is it just because I invented this?) is the idea that the spectrum can evolve arbitrarily
over time. For example, consider a trumpet tone, which typically follows an envelope of getting louder, then
softer. As the tone gets softer, it gets less bright because higher harmonics are reduced disproportionately when the
amplitude decreases. If we could record a sequence of spectra, say one spectrum every 100 ms or so, then we could
capture the spectral variation of the trumpet sound. The storage is low (perhaps 20 harmonic amplitudes per table,
and 10 tables per second, so that is only 200 samples per second). The computation is also low: Consider that full
additive synthesis would require 20 sine oscillators at the sample rate for 20 harmonics. With spectral interpolation,
the cost is only 2 table lookups per sample. We also need to compute tables from stored harmonic amplitudes, but
tables are small, so the cost is not high. Overall, we can expect spectral interpolation to run 5 to 10 times faster than
additive synthesis, or only a few times slower than a basic table-lookup oscillator.

Of course, if we just want to reproduce recorded instrument tones, maybe sampling is a better approach because
it captures inharmonic attack transients very well. While the storage cost is higher, the computational cost of
sampling (mostly due to sample-rate conversion to control frequency) is in the same range as spectral interpolation
synthesis. But with sampling, we are stuck with a particular recording of every tone and we have little control over
it. With spectral interpolation, we have the opportunity to compute the evolving spectrum.

2.2 Use Pitch and Amplitude to Compute Spectra
One successful approach that is especially good for wind instrument simulation is to model the spectrum as a
function of amplitude and frequency. We carefully record instruments playing crescendos (increasing loudness) at
different pitches. Then we analyze these tones to get a matrix of spectra at different pitch and loudness levels. As
shown in Figure 2, we input desired frequency and amplitude, do a lookup in our 2-D matrix to find the appropriate
next spectrum, then use spectral interpolation to smoothly change to that spectrum. As long as amplitude and
frequency are slowly changing, as in vibrato and amplitude envelopes, the output will realistically change spectrum
just like the real instrument. In fact, when amplitude is changing rapidly, we cannot hear the spectral changes very
well. In our model (Figure 2), we normalize all the spectra in the 2D matrix so everything comes out of the spectral
interpolation oscillator at about the same level, and we multiply that by the amplitude envelope. This captures the
rapidly varying amplitude envelope faithfully, and at least approximately does the right thing with the spectrum,
even though spectral changes may lag behind or be smoothed out a little.

2.3 Dealing with Rapid and Inharmonic Attacks
The “pure” spectral interpolation synthesis model works well for some instruments, but others, particularly brass
and saxophones1, have distinctive attack sounds that are too inharmonic and noisy to recreate from harmonic wave-
forms. The solution is to combine sampling with spectral interpolation, using short sampled attacks of about 30 ms
duration. It is tricky to join the sampled attacks smoothly to table-lookup signals because a rapid cross-fade causes
phase cancellation if the sample and table are not matched in phase. The solution is to make the sample long enough
(and 30 ms is usually enough) that it settles into a harmonic spectrum. Then, we perform analysis on the end of
the attack to obtain the amplitude and phase of each partial. This becomes the first waveform, and every waveform
after than has to keep the same phase relationship. With these tricks, we can achieve realistic, inharmonic or noisy
attacks and then control the evolution of the harmonic spectrum using almost arbitrary amplitude and frequency
controls.

2.4 Where Do We Get Control Information?
This raises the question of where to get amplitude and frequency controls. In traditional synthesis research, il-
lustrated by Figure 3, control is considered an input to the instrument, which is characterized by some synthesis
algorithm (perhaps a physical model or a vocal model, etc.) To evaluate the synthesis technique, we make sounds

1saxophones are also made of brass, but are considered woodwinds
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Figure 2: Computation for Spectral Interpolation Synthesis. Frequency and amplitude are input controls. The
spectrum is varied by mapping the current frequency and amplitude to a spectrum stored in a matrix. This may
be an interpolated lookup using the 4 nearest data points (spectra) to yield smooth spectral variations as a function
of the continuous frequency and amplitude signals. There is also interpolation through time from one spectrum to
the next, using a two-table-lookup oscillator. Since amplitude variations may need to be quite rapid, the amplitude
scaling takes place at audio rates just before the output.

with the synthesizer and (often) compare to acoustic sounds. The assumption is that if the comparison is not good,
we should go back and fix the synthesis algorithm.

Figure 3: Traditional approach to synthesis algorithm research and development. It is assumed that control functions
are not critical and not part of the synthesis algorithm. Research has shown that crude ADSR envelopes, and even
envelopes derived from the analysis of individual acoustic instrument tones, do not give musical results even if the
synthesis algorithm is perfect, so it follows that decades of synthesis research are based on faulty assumptions!

2.4.1 The SIS Research Approach

In contrast, the approach of Spectral Interpolation Synthesis is that control is an integral part of the synthesizer. If
you do not control a synthesis algorithm properly, it will never sound natural. This idea is illustrated in Figure 4.

2.4.2 Divide-and-Conquer: Performance Model vs. Synthesis Model

To develop control for spectral interpolation, we take the divide-and-conquer approach of separating the control
problem from the synthesis problem (but keep in mind that we need both together to get good sounds in the end).
In this model, the input is a score—the notes we want to play, along with phrase marks, loudness indications, and
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Figure 4: The SIS approach. Control and synthesis are considered to be related and must be developed and opti-
mized together. Both are critical to good, realistic and musical output.

perhaps other annotations. The performance model models how the performer interprets the score and produces
controls for the instrument—in the spectral interpolation approach, this is mainly amplitude and frequency. Then,
we use the synthesis model (Figure 2) to convert control signals into sound.

Figure 5: The divide-and-conquer approach. Even though control and synthesis must both be considered as part of
the problem of musical sound synthesis, we can treat them as two sub-problems.

2.4.3 Research Model: Synthesis Refinement

Given this framework, we can develop and refine the synthesis model by extracting control signals from real audio
produced by human performers and acoustic instruments. As shown in Figure 6, the human-produced control
signals are used to drive the synthesis, or instrument, model, and we can listen to the results and compare them
directly to the actual recording of the human. If the synthesis sounds different, we can try to refine the synthesis
model. For example, dissatisfaction with the sound led us to introduce sampled attacks for brass instruments.

Note that the ability to drive the instrument model with amplitude and frequency, in other words parameters
directly related to the sound itself, is a big advantage over physical models, where we cannot easily measure physical
parameters, like bow-string friction or reed stiffness, that are critical to the behavior of the model.

2.4.4 Research Model: Control Refinement

Assuming we have produced a good-sounding synthesizer, we can then turn to the control problem. The idea here is
to get humans to perform scores, extract control information, drive the synthesis with controls, and produce a sound.
This output from measured control signals represents the best we could hope to achieve since a human produced
the control with a real instrument. Now, we can also translate the score to controls with a performance model. If
we do not like the results, we can improve the model and keep iterating until we have something we like. This is
shown in Figure 7.
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Figure 6: Synthesis refinement. To optimize and test the synthesis part of the SIS model, control signals can be
derived from actual performances of musical phrases. This ensures that the control is “correct,” so any problems
with the sound must be due to the synthesis stage. The synthesis stage is refined until the output is satisfactory.

Figure 7: Control refinement. Having developed an adequate synthesis model (see Figure 6), we compare controls
from a performance model to controls extracted from human performance. Both controls are synthesized by the
known-to-be-good synthesis model, so any problems can be attributed to the performance model that computes
controls. The model is refined until the output sounds good compared to the output based on human performance.
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2.5 A Study Of Trumpet Envelopes
We will now discuss a particular study that followed the paradigm just described. My students and I constructed
a good spectral-interpolation-based trumpet synthesizer and set out to obtain good control envelopes from scores.
This discussion is not just relevant to spectral interpolation synthesis. The findings are relevant to any synthesis
method and help explain some of the subtleties we find in acoustic instrument synthesis.

The main conclusion of this work is that

• envelopes are largely determined by context;

• envelope generation techniques can improve synthesis.

In early experiments, we studied the question of how the context of notes in the score affect the center of mass
of amplitude envelopes. The center of mass tells us, if we were to cut out the envelope shape from a piece of
cardboard, where would the shape balance? If the beginning of the note is loud, the center of mass will be earlier. If
the sound grows steadily, the center of mass will be later. This is one of the simplest measures of shape and a good
place to start.

Figure 8 shows some results of this study. The multiple curves show great consistency from one performance
to the next when the same music is played, but there is a striking difference between the envelopes on the left, from
articulated tones, to the ones on the right, from slurred tones. Some results from measuring center of mass include:

• When the previous pitch is lower and the next pitch is higher (we call this an “up-up” condition), notes showed
a later center of mass than other combinations;

• large pitch intervals before and after the tone resulted in an earlier center of mass than small intervals;

• legato articulation gave a later center of mass than others (this is clearly seen in Figure 8.

Figure 8: Context influences amplitude envelopes. The envelopes on the left are from the second of three articulated
(tongued) notes. At right, the envelopes are from the second of three slurred notes. It is clear that articulation
and context are significant factors in determining envelope shape. There is not a single “characteristic” trumpet
envelope, and measuring the envelope of one tone out of context will not produce many of the features seen above.

2.5.1 Envelope Model

The center of mass does not offer enough detail to describe a complete trumpet envelope. A more refined model is
illustrated in Figure 9. In this model, the envelope is basically smooth as shown by the dashed line, but this overall
shape is modified at the beginning and ending, as shown inside the circles. It is believed that the smooth shape is
mainly due to large muscles controlling pressure in the lungs, and the beginning and ending are modified by the
tongue, which can rapidly block or release the flow of air through the lips and into the trumpet.

The next figure (Figure 10) shows a typical envelope from a slurred note where the tongue is not used. Here,
there is less of a drop at the beginning and ending. The drop in amplitude (which in the data does not actually reach
zero or silence), is probably due to the disruption of vibration when valves are pressed and the pitch is changed.
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Figure 9: The “tongue and breath” envelope model is based on the idea that there is a smooth shape (dashed line)
controlled by the diaphram, upper body and lungs, and this shape is modified at note transitions by the tongue and
other factors. (Deviations from the smooth shape are circled.)

Figure 10: The envelope of a slurred note. This figure shows that the “tongue and breath” model also applies to
the envelopes of slurred notes (shown here). The deviations at the beginning and ending of the note may be due to
trumpet valves blocking the air or to the fact that oscillations are disrupted when the pitch changes.

Whatever is going on physically, the idea of a smooth breath envelope with some alterations at the beginning and
ending seems reasonable.

Based on looking a many envelopes, we conclude that a “breath envelope” is useful to give the overall shape,
and a specific attack and decay should be added to incorporate fine details of articulation. This envelope model is
shown in detail in Figure 11, which shows 9 discrete parameters used to describe the continuous curve. The generic
“breath envelope” shown in the upper part of the figure is an actual envelope from a long trumpet tone. By taking a
range of the whole envelope, from tf to tt, we can get a more rounded shape (smaller tf larger tt) or a flatter shape (tf
and tt close in time), and we can shift the center of mass earlier (later tf and tt) or later (earlier tf and tt). Additional
parameters control the beginning and ending details. Note how this is decidedly not an ADSR envelope!

2.5.2 Computing Parameters

All 9 envelope parameters must be automatically computed from the score. Initially, we used a set of rules designed
by hand. Parameters depend on:

• pitch (in semitones, according to score);

• duration (in seconds, according to score);

• begin-phrase (is this the first note in a phrase?);

• end-phrase (is this the last note in a phrase?)

• from-slur (is there a slur from preceding note?);

• to-slur (is there a slur to the next note?);

• direction-up (is this note higher than preceding note?).
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Figure 11: An amplitude envelope specification. In order to produce a wide variety of shapes based on the “tongue
and breath” envelope model, we describe continuous envelopes with 9 parameters, as shown here.

The rules were developed by fitting generated envelopes to actual measured envelopes and generalizing from
observed trends. Here is one example, illustrating the computation of the parameter tf. As shown in Figure 12, there
are three cases. If coming from a slur and the direction is up, tf = 0.1. If the direction is not up, tf = 0.4. If not
coming from a slur, tf = 0.03−0.01× log2(dur).

Figure 12: Computing envelope parameters. This example shows how the parameter tf is derived from score
features from-slur, direction-up and dur.

Similar rules are used to compute all 9 parameters of every envelope. The score-to-envelope mapping is hand-
crafted and far from complete and perfect, but the results, at least for simple scores, is quite good and sounds very
natural. Constructing mappings between multi-dimensional spaces (in this case, from multiple features of scores to
multiple envelope parameters) is a natural problem for machine learning. In fact, my student Ning Hu created an
automated system to analyze audio recordings of acoustic instruments and create both a spectral interpolation syn-
thesis model and a performance model that includes amplitude envelopes and vibrato. No manual rule construction
or design was required.
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2.6 Summary and Discussion of Spectral Interpolation
Spectral Interpolation Synthesis is based on modeling “real” performances, using measurements of spectra and other
audio features to model what the listener hears without any modeling of the physical instrument. The performance
model results in phrase-long control functions rather than individual notes. Since control functions are based on
note-to-note transitions and context, the method requires some look-ahead. (The shape of the envelope depends on
the pitch and articulation of the following note.)

2.7 Conclusions
What have we learned? First, envelopes and control are critical to music synthesis. It is amazing that so much
research was done on synthesis algorithms without much regard for control! Research on the spectral centroid
showed statistically valid relationships between score parameters and envelope shape, which should immediately
raise concerns about sampling synthesis: If samples have envelopes “baked in,” how can sampling ever create
natural-sounding musical phrases? Certainly not without a variety of alternative samples with different envelopes
and possibly some careful additional control through amplitude envelopes, but for brass, that also implies spectral
control. Large sample libraries have moved in this direction.

The idea that envelopes have an overall “breath” shape and some fine details in the beginning and ending of every
note seems to fit real data better than ADSR and other commonly used models. Even though spectral interpolation
or even phrase-based analysis/synthesis have not become commonplace or standard in the world of synthesis, it
seems that the study of musical phrases and notes in context is critical to future synthesis research and systems.

3 Algorithmic Control of Signal Processing
In the previous section, we looked carefully at some ideas on the synthesis of acoustic instrument sounds. In this
section, we consider something that has no basis in the acoustical world: the direct generation and control of audio
through algorithms.

There are relatively few works that push decision making, selection, wave shape, and parametric control down
below the note level and into the audio signal itself. Ianis Xenakis developed a system called GENDYN that
creates waveforms from line segments using algorithmic processes. Herbert Brun’s SAWDUST is another example,
described as a program for composing waveforms. Curtis Roads wrote the book Microsound, which concerns
granular synthesis and more generally the realm between samples and notes. We have explored granular synthesis
with Nyquist in some detail. In this section, we will look at signals controlled by (Nyquist) patterns and patterns
controlled by signals.

3.1 Sounds controlled by Patterns
In Figure 13, we see a some code and a generated control function (a Nyquist signal). The signal is created by the
SAL function pat-ctrl, which takes two patterns as parameters. The first pattern (durpat) returns durations and
the second (valpat) returns amplitude values. As seen in the generated signal, durpat alternates between 0.1 and
0.2, while valpat cycles through the stair-step values of 0, 1, 2.

3.1.1 Pat-ctrl

The implementation of pat-ctrl is shown below. This is a recursive sequence that produces one segment of output
followed by a recursive call to produce the rest. The duration is infinite:

define function pat-ctrl(durpat, valpat)
return seq(const(next(valpat), next(durpat)), pat-ctrl(durpat, valpat))

We can use pat-ctrl to construct a frequency control function and synthesize that frequency contour. The
function pat-fm, shown below, adds the result of pat-ctrl to a pitch parameter, converts the pitch from steps
to Hz, and then synthesizes a sinusoid. If durpat returns very small values, the resulting sound will not have

10



Figure 13: The pat-ctrl function creates a piecewise-constant function where each step has a duration and am-
plitude determined by the two pattern generator object parameters.

discernible pitch sequences, at least not at the level of segment durations returned by durpat. However, higher-
level structures in durpat and valpat will create structured timbral variations that catch our attention. In other
words, the intent here is to modulate the sine tone at audio rates using complex patterns and resulting in novel
sounds.

define function pat-fm(durpat, valpat, pitch, dur)
begin
with hz = step-to-hz(pitch + pat-ctrl(durpat, valpat))
return pwl(0.01, 1, dur - 0.1, 1, dur) * hzosc(hz + 4.0 * hz * hzosc(hz))

end

3.1.2 Using Scores

One long sine tone may not be so interesting, even if it is modulated rapidly by patterns. The following example
shows how we can write a score that “launches” a number of pat-fm sounds (here, the durations are 30, 20, 18,
and 13 seconds) with different parameters. The point here is that scores are not limited to conventional note-based
music. Here we have a score organizing long, overlapping, and very abstract sounds.

exec score-play(
{{ 0 30 {pat-fm-note :grain-dur 8 :spread 1 :pitch c3 :fixed-dur t :vel 50}}
{10 20 {pat-fm-note :grain-dur 3 :spread 10 :pitch c4 :vel 75}}
{15 18 {pat-fm-note :grain-dur 1 :spread 20 :pitch c5}}
{20 13 {pat-fm-note :grain-dur 1 :spread 10 :pitch c1}}})

3.2 Pattern Controlled by Sounds
If we consider sounds controlled by patterns, we should think about the opposite. Here, we will look at control
envelopes (which are also of type SOUND in Nyquist) and how they can be used in patterns. (Maybe you can also
think of interesting ways for audio sounds to control patterns.)

When constructing sequences of events, scores and score-gen may be all you need. But if you want to
influence the evolution of fine-grain decisions, such as pattern output over time, then perhaps envelopes and other
controls can be useful. This relates to a concept we saw before: tendency masks, which specify long-term trends.
A standard example is: randomly choose the next pitch between an upper and lower bound, where the bounds are
given by functions that change over time.

To implement something like tendency masks in patterns, we will use Nyquist SOUNDs to specify the global
continuous evolution of parameter values. To access the sound at a particular time, we use sref(sound, time ).
Note that sound can be any SOUND, but it might be most convenient to use a piece-wise linear envelope.

11



In sref, time is relative to the environment, so time = 0 means “now.” And remember that while behaviors
start at “now,” existing sounds have a definite start time. So when we write sref(sound, 0), it means access
sound at the current time, not access the beginning (time 0) of sound .

3.2.1 A Template for Global Control using Sounds

Here is an example you can build on for controlling patterns with sounds. There are three definitions:

• pitch-contour defines a time-varying contour that we want to use with some pattern computation;

• get-pitch is a function that simply accesses the pitch contour at the current time (indicated by time 0);

• pwl-pat-fm is a function that will create and use a pattern. Within the pattern, we see make-eval({get-pitch}).
The make-eval pattern constructor takes an expression, which is expressed in Lisp syntax. Each time the
pattern is called to return a value, the expression is evaluated. Recall that in Lisp, the function call syntax
is (function-name arg1 arg2 ...), so with no arguments, we get (function-name ), and in SAL,
we can write a quoted list as {function-name }. Thus, make-eval({get-pitch}) is the pattern that calls
get-pitch to produce each value.

variable pitch-contour = pwl(10, 25, 15, 10, 20, 10, 22, 25, 22)

function get-pitch()
return sref(pitch-contour, 0)

function pwl-pat-fm()
begin
...
make-eval({get-pitch}),
...

end

play pwl-pat-fm()

We can do something similar with score-gen, using a SOUND to provide a time-varying value that guides the
progress of some parameter. You can even use the envelope editor in the NyquistIDE to edit the contour graphically.
In the following example, the variable pitch-contour is accessed as part of the pitch: calculation. Again, sref
is used, but the time parameter to sref is sg:start, not 0. We need to use sg:start here because the entire
score-gen computation is performed at time 0. We are not in a behavior, and there is no environment that changes
the current time with each new note. Since everything is (normally) relative to time 0, we use score-gen’s special
sg:start variable to refer to the “current” time, that is, the start time of each note.

begin
with pitch-contour = pwl(10, 25, 15, 10, 20, 10, 22, 25, 22),

ioi-pattern = make-heap({0.2 0.3 0.4})
exec score-gen(save: quote(pwl-score),

score-dur: 22,
pitch: truncate(c4 + sref(pitch-contour, sg:start) +

#if(oddp(sg:count), 0, -5)),
ioi: next(ioi-pattern),
dur: sg:ioi - 0.1,
vel: 100)

end
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4 3-D Sound
We now turn to the topic of sound as originating in 3-D space. We know from previous discussions of perception
that there are various cues that give the impression of the origin of sounds we hear. In computer music work,
composers are interested in simulating these cues to simulate a 3-D sonic environment. Earlier, we introduced
the idea of head-related transfer functions and the simulation of spatial cues over headphones. In this section, we
expand on this discussion and also consider the use of multiple speakers in rooms and particularly in concert halls.

4.1 Introduction
To review from our discussion of sound localization, we use a number of cues to sense direction and distance.
Inter-aural time delay and amplitude differences give us information about direction in the horizontal plane, but
suffers from symmetry between sounds in front and sounds behind us. Spectral cues help to disambiguate front-to-
back directions and also give us a sense of height or elevation. Reverberation, and especially the direct-sound-to-
reverberant-sound ratio gives us the impression of distance, as do spectral cues.

4.2 Duplex Theory
In the duplex theory of Lord Rayleigh, sound localization is achieved through a combination of interaural time
difference (ITD) and interaural level difference (ILD). ITD is caused by the difference in distance between our ears
and the sound source when the source is to the left or right. The time difference is related to the speed of sound, and
remembering that sound travels about 1 foot per millisecond, we can estimate that ITD is a fraction of a millisecond.
(No wonder our ears can perceive time so precisely—without very precise timing, or at least relative time between
left and right ears, we would not be able to localize sounds.)

The ILD is caused by the masking effect of our heads when sound comes from one side or the other. Since
different frequencies refract around our heads differently, the ILD is frequency dependent and more pronounced at
higher frequencies where the wavelengths are short and our head does a better job of shielding one ear from the
sound.

In duplex theory, there is ambiguity caused by symmetry. Any direction from the head falls on a cone-shaped
surface, where the apex of the cone is at the head and center line of the cone runs through the two ears. This set
of ambiguous directions is called the cone of confusion (Figure 14) because every point on the cone produces the
same ITD and ILD.

Figure 14: The “cone of confusion,” where different sound directions give the same ITD and ILD. (From Bill
Kapralos, Michael Jenkin and Evangelos Milios, “Virtual Audio Systems,” Presence Teleoperators & Virtual Envi-
ronments, 17, 2008, pp. 527-549).
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In fact, the duplex theory ignores the pinnae, our outer ears, which are not symmetric from front-to-back or
top-to-bottom. Reflections in the pinnae create interference that is frequency-dependent and can be used by our
auditory system to disambiguate sound directions. The cues from our pinnae are not as strong as ITD and ILD, so
it is not unusual to be confused about sound source locations, especially along the cone of confusion.

4.3 HRTF: Head-Related Transfer Functions
When sound reaches our ears from a particular direction, there is a combination of ITD, ILD, and spectral changes
due to the pinnae. Taken together, these cues can be expressed as a filter called the head-related transfer function, or
HRTF. We can measure the HRTF, for example by placing tiny microphones in the ears of a subject in an anechoic
chamber, holding their head steady, and recording sound from a speaker placed at a carefully controlled angle and
elevation. There are some clever ways to estimate the HRTF, but we will skip the signal processing details. To fully
characterize the HRTF, the loudspeaker and/or listener must be moved to many different angles and elevations. The
number of different angles and elevations measured can range from one hundred to thousands.

To simulate a sound source at some angle and elevation, we retrieve the nearest HRTF measurement to that
direction and apply the left and right HRTFs as filters to the sound before playing the sound to the left and right ears
through headphones. (See Figure 15.)

Figure 15: Sound is localized with HRTFs by filtering a sound to simulate the effect of delays, head, and ears on
the sound. A different filter is used for left and right channels, and the filters are different for different directions.
(From http://www.ais.riec.tohoku.ac.jp/Lab3/sp-array/index.html).

One way to implement the HRTF filters is to compute the HRIR, or head-related impulse response, which is
the response of the HRTF to an impulse input. To filter a sound by the HRTF, we can convolve the sound with the
HRIR. If the sound is moving, it is common to interpolate between the nearest HRTFs or HRIRs so that there is no
sudden switch from one filter to another, which might cause pops or clicks in the filtered sound.

4.4 HRTF, Headphones, and Head Tracking
When HRTFs are used, the listener normally wears headphones, which isolate sounds to the left and right ears and
eliminate most of the effects of actual room acoustics in the listening space. Headphones have the problem that
if the listener moves their head, the simulated space will rotate with the head and the headphones. To solve this
problem, headphones are often tracked. Then, if the head turns 20◦ to the left, the virtual sound source is rotated to
the right to compensate. Headphones with head tracking are sometimes combined with virtual reality (VR) goggles
that do a similar thing with computer graphics: when the listener turns 20◦ to the left, the virtual world is rotated to
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the right, giving the impression that the world is real and we are moving the head within that world to see different
views.

4.5 Room Models
An alternative to HRTFs and headphones is to use speakers in a room to create the effect of localized sounds. One
approach is to use ray-tracing ideas from computer graphics to estimate a sound field in an imaginary space. One
difficulty is that sound is slow and has long wavelengths relative to objects and rooms, which means that refraction
is significant—sound does not always travel in straight lines! The refraction is frequency dependent. Nevertheless,
ray tracing can be used to develop early reflection models for artificial reverberation that convey the geometry of
rooms, even if the simulation is not perfect.

4.6 Doppler Shift
Another interesting process that works well with loudspeakers is the simulation of motion using Doppler shift.
Sound at a distance is delayed. When sound sources move, the distance changes, and so does the delay. The change
in delay creates Doppler shift, or a change in frequency. Doppler shift can be modeled with actual delay consisting
of buffers of samples, perhaps with some interpolation to “tap” into the delay at fractional positions. Alternatively,
we can sometimes use frequency modulation to give the effect of Doppler shift without any real simulation of delay.
If there are multiple reflections, each reflection can have a different Doppler shift. This could add additional realism,
but I have never seen a system that models reflections with individual Doppler shifts.

4.7 Reverberation
Doppler shift is enhanced through the use of reverberation. If a sound is receding rapidly, we should hear several
effects: the pitch drops, the sound decreases in amplitude and the ratio of reverberation to direct sound increases.
Especially with synthesized sounds, we do not have any pre-conceptions about the absolute loudness of the (virtual)
sound source. Simply making the source quieter does not necessarily give the impression of distance, but through
the careful use of reverberation, we can give the listener clues about distance and loudness.

4.8 Panning
Stereo loudspeaker systems are common. A standard technique to simulate the location of a sound source between
two speakers is to “pan” the source, sending some of the source to each speaker. A simple approach is to scale the
signal on the left by α and on the right by 1−α . As α varies from 1 to 0, the sound moves from left to right.

There are a number of problems with this simple approach. First, the sounds of speakers combine additively,
but due to room reflections and variations in distance, there will be some phase cancellation. When α = 1/2, the
actual loudness in the room will be lower than with α = 1 or α = 0. This is known as the “hole in the middle”
effect. Secondly, two separate sound sources can create ILD, but not ITD or spectral effects consistent with the
desired sound placement, so our ears are rarely fooled by stereo into believing there is a real 3-D or even 1-D space
of sound source locations. Finally, room reflections defeat some of the stereo effect or at least lead to unpredictable
listening conditions. Panning is discussed in detail in a supplemental document.

4.9 Multi-Speaker Playback
If two speakers are better than one, why not many speakers? This is not so practical in the home or apartment, but
common in movie theaters and concert halls, especially for concerts of computer music. “Surround Sound” systems
are available as consumer audio systems as well. In general, the simulation of direction is achieved by choosing the
nearest speaker in the desired direction. Often, sound is panned between the nearest 2 speakers when speakers are
in a plane around the audience, or between the nearest 3 speakers when speakers are arranged in a dome.

At the risk of over-generalization, there are two general schools of thought on sound reproduction with loud-
speakers. One school views loudspeakers as an approximation to some ideal. In this view, loudspeakers should have
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high fidelity to recreate any desired source sound with minimal alteration. When many speakers are used, they are
almost invariably identical and uniformly distributed to allow panning to any angle. The focus is on sound content,
and any speaker limitations are just a necessary evil.

The other school views electro-acoustic music more holistically. Loudspeakers are a part of the process. Rather
than bemoan speaker imperfections, we can create an “orchestra” of loudspeakers of different types and placement.
Composers can utilize directionality and frequency responses of different loudspeakers with musical intent. We
embrace the fact that sound comes from loudspeakers rather than trying to hide it.

Recently, a new approach to sound localization with loudspeakers has come under investigation. The technique,
called wavefield synthesis, uses a large array of speakers to reproduce the wave front of an imaginary 3-D or 2-
D scene. Imagine a cubical room with one wall open and sound sources outside the room. Imagine an array of
microphones on a grid stretched across the open wall, capturing the incoming sound wave at 100 or more locations.
Now, imagine closing the wall, replacing each microphone with a small loudspeaker, and playing back the recorded
sound wave through 100 or more loudspeakers. In principle, this should reproduce the entire incoming sound wave
at the wall, creating a strong 3-D effect. Of course there are questions of directionality, how many speakers are
needed, whether to use a 2-D or 1-D array, room reflections, etc. An example of wavefield synthesis and playback
is an auditorium at the Technical University of Berlin, which has 832 audio channels. Small speakers are placed in
a continuous line on the left, front, and right walls. The speakers are separated by only 10 cm, but because of the
small size, there are larger speakers just below them, every 40 cm. A small cluster of computers is used to compute
each channel based on the precise delay from virtual sound sources. The results are quite impressive and unlike
any typical speaker array, giving the impression that sounds are emerging from beyond or even within the line of
speakers.

4.10 Summary
In this section, we have reviewed multiple perceptual cues for sound location and distance. HRTFs offer a powerful
model for simulating and reproducing these cues, but HRTFs require headphones to be most effective, and since
headphones move with the head, head tracking is needed for the best effect. For audiences, it is more practical to use
loudspeakers. Multiple loudspeakers provide multiple point sources, but usually are restricted to a plane. Panning
is often used as a crude approximation of ideal perceptual cues. Panning can be scaled up to multiple loudspeaker
systems. Rather than treat speakers as a means of reproducing a virtual soundscape, loudspeaker “orchestras” can be
embraced as a part of the electroacoustic music presentation and exploited for musical purposes. Finally, wavefield
synthesis offers the possibility of reproducing actual 3-D sound waves as if coming from virtual sound sources, but
many speakers are required, so this is an expensive and still mostly experimental approach.
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