Introduction to Computer Music

Week 11 Physical Models
Version 1, 2 Nov 2018

Roger B. Dannenberg

Topics Discussed: Mass-Spring Model, Karplus-Strong Plucked String Algorithm,
Waveguide Model, Commuted Synthesis, Electric Guitar Model, Analysis Example

1 Introduction

One promising way to create sounds is to simulate or model an acoustic instrument. If the model is accurate,
then the details of control and vibration can in principle lead to realistic sounds with all the control possibilities
of physical instruments. This approach might be called physics-based modeling, but the common terminology is
simply physical models. Physical models can be contrasted with abstract synthesis or the use of mathematical func-
tions (such as FM synthesis and Additive synthesis), sampling, and source/filter models. None of these alternative
approaches really capture the complexities of physical systems. When aspects of physical systems defy analysis,
we can resort to simulation to compute and predict the behavior of those systems. However, even simulation is
selective and incomplete. The key is to model the interesting aspects while keeping the overall simulation and its
computation tractable.

Like all of the synthesis methods we have covered, physical modeling is not one specific technique, but rather
a variety of related techniques. Behind them all, however, is the basic idea that by understanding how sound /
vibration / air / string behaves in some physical system (an instrument), we can model that system in a computer
and thereby generate realistic sounds through computation.

2 Mass-Spring Model

A simple example of a physical model is the Mass-Spring model consisting of a string and a set of masses attached
to the string (shown in Figure 1). This is a discrete approximation of a continuous string where mass is distributed
uniformly throughout the length of the string. By “lumping” the mass at a finite set of points, we can use digital
simulation to model the string. In the model, we consider the string between masses to be mass-less springs that
pull on the masses with a force that is proportional to the stretch of the spring.

To analyze all the forces here: the springs are pulling on the objects in opposite directions, the masses at the
ends are assumed fixed. Because the springs are pulling in both directions, there is little/no longitudinal force on
the objects, but there is a restoring force. So when the string is bent up with the concave side facing down, some
of the forces on the masses are downward, as shown by "Restoring Force" in Figure 1. Conversely, when the string
is down with the concave side facing up, the net force is pulling up. These forces will accelerate the objects. If we
put the string in this configuration and release it, then the left half will accelerate downward and right half would
go upward. As the masses are pulled to zero displacement, or to a straight line between the end points, there is no
more net force on the objects but the masses will keep moving and stretch the string in the opposite direction until
the restoring force can slow them down and reverse the direction. This motion will repeat, causing the string to
oscillate.

This is a computationally expensive model because you have to compute the force on each one of the masses
and store the velocity and position of the masses for each time step of the simulation. But computers are fast, and
discrete time simulation is mostly multiplies and adds, so you can easily run interesting models (including this one)

Restoring Force

Figure 1: Mass-Spring Model of a String

in real-time. The number of modes (partials) that you can support corresponds to the number of masses. Also,
you can add stiffness and other interesting properties into the string, e.g. the string can be non-linear, it can have a
driving force, there can be friction, etc.

3 Karplus-Strong Plucked String Algorithm

Let’s take a look at a variation of the Mass-Spring model. This is a really simple but very effective physical model
of a plucked string, called the Karplus-Strong algorithm (so named for its principal inventors, Kevin Karplus and
Alex Strong). One of the first musically useful physical models (dating from the early 1980s'), the Karplus-Strong
algorithm has proven quite effective at generating a variety of plucked-string sounds (acoustic and electric guitars,
banjos, and kotos) and even drumlike timbres. Nyquist has an implementation in the function pluck.

Here’s a simplified view of what happens when we pluck a string: At first the string is highly energized and
it vibrates, creating a fairly complex (meaning rich in harmonics) sound wave whose fundamental frequency is
determined by the mass and tension of the string. Gradually, thanks to friction between the air and the string, as
well as the dissipation of energy in the form of sound waves, the string’s energy is depleted. The higher frequencies
tend to lose energy the fastest, so the wave becomes less complex as it decays, resulting in a "purer" tone with fewer
harmonics. After some amount of time all of the energy from the pluck is gone, and the string stops vibrating.

If you have access to a stringed instrument, particularly one with some very low notes, give one of the strings a
good pluck and see if you can see and hear what’s happening based on the description above.

3.1 How a Computer Models a Plucked String with the Karplus-Strong Algorithm

Now that we have a physical idea of what happens in a plucked string, how can we model it with a computer? The
Karplus-Strong algorithm does it like this: first we start with a buffer full of random values—noise. (A buffer is just
some computer memory (RAM) where we can store a bunch of numbers.) The numbers in this buffer represent the
initial energy that is transferred to the string by the pluck. The Karplus-Strong algorithm looks like this:

1
Yl == E(thp“‘ytfpfl)

Here, p is the period or length of the buffer, 7 is the current sample count, and Y is the output of the system.

To generate a waveform, we start reading through the buffer and using the values in it as sample values. If
we were to just keep reading through the buffer over and over again, we would get a complex, periodic, pitched
waveform. It would be complex because we started out with noise, but pitched because we would be repeating the
same set of random numbers. (Remember that any time we repeat a set of values, we end up with a pitched sound.)
The pitch we get is directly related to the size of the buffer (the number of numbers it contains) we’re using, since
each time through the buffer represents one complete cycle (or period) of the signal.

'When I was an undergraduate at Rice University, a graduate student was working with a PDP-11 mini-computer with a vector graphics
display. There were digital-to-analog converters to drive the display, and the student had connected them to a stereo system to make a primitive
digital audio system. I remember his description of the synthesis system he used, and it was exactly the Karplus-Strong algorithm, including
initializing the buffer with random numbers. This was in the late 1970s, so it seems Karplus and Strong reinvented the algorithm, but certainly
deserve credit for publishing the work.

Now, here’s the trick to the Karplus-Strong algorithm: each time we read a value from the buffer, we average it
with the last value we read. It is this averaged value that we use as our output sample. (See Figure 2.) We then take
that averaged sample and feed it back into the buffer. That way, over time, the buffer gets more and more averaged
(this is a simple filter, like the averaging filter described in an earlier chapter). Let’s look at the effect of these two
actions separately.

xin) -- + ()

Loop filter Delay line

Hiz) (al— .1, [-——

Figure 2: Schematic view of a computer software implementation of the basic Karplus-Strong algorithm. For each
note, the switch is flipped and the computer memory buffer is filled with random values (noise). To generate a
sample, values are read from the buffer and averaged. The newly calculated sample is both sent to the output stream
and fed back into the buffer. When the end of the buffer is reached, we simply wrap around and continue reading at
the beginning. This sort of setup is often called a circular buffer. After many iterations of this process, the buffer’s
contents will have been transformed from noise into a simple waveform. If you think of the random noise as a lot
of energy and the averaging of the buffer as a way of lessening that energy, this digital explanation is not all that
dissimilar from what happens in the real, physical case. Thanks to Matti Karjalainen for this graphic.

3.2 Averaging and Feedback

First, what happens when we average two values? Averaging acts as a low-pass filter on the signal. Since high
frequencies have a high rate of change, averaging has a bigger effect on high frequencies than low ones. So,
averaging a signal effectively reduces high frequencies.

The “over time” part is where feeding the averaged samples back into the buffer comes in. If we were to just
keep averaging the values from the buffer but never actually putting the average back into the buffer, then we would
be stuck with a static waveform. We would keep averaging the same set of random numbers, so we would keep
getting the same results.

Instead, each time we generate a new sample, we store it back into the buffer. That way our waveform evolves
as we move through it. The effect of this low-pass filtering accumulates over time, so that as the string “rings,” more
and more of the high frequencies are filtered out of it. The filtered waveform is then fed back into the buffer, where
it is filtered again the next time through, and so on. Figure 3 illustrates how the contents of the Karplus-Strong
buffer changes and decays over time. After enough times through the process, the signal has been averaged so
many times that it reaches equilibrium—the waveform is a flat line and the string has died out.

Physical models generally offer clear, “real world” controls that can be used to play an instrument in different
ways, and the Karplus-Strong algorithm is no exception: we can relate the buffer size to pitch, the initial random
numbers in the buffer to the energy given to the string by plucking it, and the low-pass buffer feedback technique to
the effect of air friction on the vibrating string.

4 Waveguide Model

Now, we consider another model of the string, called the waveguide model, introduced by Julius Smith. In a real
string, waves travel down the string until they reach the end where the wave is reflected and travels back in the
opposite direction. A vibrating string is actually a wave travelling up and down the string, reflecting at both ends,
and the left-going and right-going waves sum through superposition to determine the displacement of the string at
any given location and time.

filter/feedback cycle x30

o/—\/\/—/\f""M

-1 .

filter/feedback cycle x60

1 : .

Figure 3: Applying the Karplus-Strong algorithm to a random waveform. After 60 passes through the filter/feedback
cycle, all that’s left of the wild random noise is a gently curving wave. The result is much like what we described
in a plucked string: an initially complex, periodic waveform that gradually becomes less complex over time and
ultimately fades away.

It is easy to model wave travel in one direction: we simply delay the samples by storing incoming samples in
an array (wrapping around when we reach the end), and reading out older samples. This allows a delay up to the
length of the array. If we ignore friction and other losses, a string carrying a waveform can be modeled as a delay.

To model left-going and right-going waves, we simply use two one-way models, i.e. two delays. The output of
one delay connects to the input of the other. (See Figure 4.) If we want the amplitude of the string at some particular
point, we access both delays (the left-going and right-going wave models) and sum the amplitudes.

4.1 “Lumped” Filters

Now, what about losses? In a continuous string, there should be loss at every step of the way through the string.
Since this would be computationally expensive, we use a shortcut and compute the total losses for the entire trip
from one end of the string to the other. This can be expressed as a filter that we can apply to the output of the delay.
This so-called “lumped” filter is efficient and can give the same effect as accumulating tiny losses at each sample
of delay.

Figure 4: A waveguide model. The right-going and left-going wave, which are superimposed on a single string,
are modeled separately as simple delays. The signal connections at the ends of the delays represent reflections. A
waveguide can also model a column of air as in a flute.

5 Mechanical Oscillator

To make a sustained sound, we must overcome the losses in the waveguide. The case of the bowed string is
probably the easiest to understand, so we will start there. Figure 5 illustrates the oscillation in a bowed string. The
bow alternately sticks to and slips across the string. Rather than reaching a steady equilibrium where the bow pulls
the string to some steady stretched configuration, the “slip” phase reduces friction on the the string and allows the
string to move almost as if were plucked. Interestingly, string players put rosin on the bow, which is normally
sticky, but when the string begins to slide, the rosin heats up and a molecular level of rosin liquifies and lubricates
the bow/string contact area until the string stops sliding. It’s amazing to think that rosin on the string and bow can
melt and re-solidify at audio rates!

Sticking{

Figure 5: A bowed string is pulled by the bow when the bow sticks to the string. At some point
the bow does not have enough friction to pull the string further, and the string begins to slip. The
sliding reduces the friction on the string, which allows it to stretch in opposition to the bowing direc-
tion. Finally, the stretching slows the string and the bow sticks again, repeating the cycle. (From
http://physerver.hamilton.edu/courses/Fall12/Phy175/ClassNotes/Violin.html)

5.1 MclIntyre, Woodhouse (1979) + Schumacher (1983)

An important advance in physical models came from Mclntyre and Woodhouse who resorted to models to help
understand the nature of oscillation in acoustical instruments. Later, Schumacher, a physics professor at Carnegie
Mellon University, visited Mclntyre and Woodhouse to learn more about their work and the three physicists wrote
a paper that formed the basis for a lot of work in the field of Computer Music.

Their model follows the basic ideas we have outlined so far. Rather than a bi-directional waveguide, they
combined the two delays into one as shown in Figure 6, with a single low-pass filter to model losses over the entire
loop. Since the model is for a woodwind rather than a bowed string, the delay is considered to represent a traveling
pressure wave rather than string displacement. McIntyre, Woodhouse and Schumacher added a non-linear element
to generate oscillation.

5.2 Smith: Efficient Reed-Bore and Bow-String Mechanisms (ICMC 86)

Julius Smith was influenced by Mclntyre, Woodhouse and Schumacher and developed computer music instruments
that model the clarinet and violin.

Figure 6: Mclntyre Woodhouse model consisting of a delay representing sound traveling through the bore of a
clarinet and a filter representing the losses over the round trip. The figure shows that the single delay is equivalent
to a bi-directional waveguide with perfect reflection at one end.

Figure 7 shows Smith’s clarinet model. It includes a waveguide with low-pass filter (-LP in the figure). At the
left side of the figure is a model of the reed, which has non-linear behavior that enables oscillation. A clarinet reed
is a thin, flat, flexible plate that vibrates over an opening to the clarinet’s body or bore. The reed acts as a valve to
let air in when the reed is up or open, and to block the air when the reed is down or closed.

Pm/2

ey

I Delay }<—
Mouth Reed Bore Bell

Pm/2 = mouth pressure, p(P*A/2) = reflection coefficient
(lookup table)

Figure 7: Clarinet model

To understand oscillation in the clarinet model, we can follow the “story” of one period. To being with, the reed
is open and pressure from the mouth enters the clarinet. The pressure also closes the reed valve, at least to some
extent. The high pressure front travels to the bell, the flare at the end of the clarinet, where the pressure is reflected.
The reflection is inverted, so now the pressure front is negative. The negated pressure wave returns to the reed,
where it is reflected again. This time, the reflection does not invert the wave because this end is effectively closed.
The negative pressure acts to close the reed even further. The negative pressure returns to the bell, is inverted again
and reflects back to the reed as a positive pressure wave. This positive pressure tends to open the reed, allowing
air through the reed valve, which reinforces the positive pressure wave, and another cycle begins. If the addition of
energy or pressure compensates for losses, a sustained oscillation will result.

Figure 8 illustrates a bowed string model. In this model, the bow is not at the end of the string, so there is one
waveguide from the bow to the bridge (where strings are anchored over the body) and one waveguide from the bow
to the nut (where strings are anchored at the end of the fingerboard). The bow has a non-linear element (p in the
figure) that models the change in friction between the stick and slip phases.

Also, the model includes a filter between the bridge and the output. In a violin, the bridge transfers vibration
from strings to the body, and the body radiates sound into the room. The body has resonances and radiates in a
frequency-dependent manner, so a filter to model the transfer of sound from bridge to room is important to getting
a violin-like sound.

Bridge/

—'{ Delay + Delay Body —
[pj Vb + o % @dge

—| Delay —&) Delay }<—

Nut String Bow String Bridge Body

Here, delays contain velocity rather than pressure

Figure 8: Bowed String Model

6 Flute Physical Model

Figure 9 is a simple model for a flute, showing a single delay that models the round-trip through the flute, a low-pass
filter (LP) to model the losses, and a high-pass filter (HP) to model radiation into the room.

L e S

Figure 9: Flute Physical Model

Figure 10 shows a more elaborate model that includes a mouthpiece to drive sustaining oscillation. The input
to the mouthpiece is the sum of a smooth pressure envelope (the breath) and some random noise (turbulence). As
with other models, there must be some non-linearity or the model will simply settle into a steady state. In this case,
the non-linearity is x — x>, which is simple but enough to allow oscillation to occur.

out-scl
. haise @amaount)
flow envelope sums3
i sum1 / suma
flow v reflaction ﬁ
| — lonw-pass
N s >

T fue kore delay line E———

noise /

source /

feechack scale 1 feechack scale 2

Figure 10: Flute Physical Model

7 Physical Models in Nyquist

Nyquist has a number of built-in physical models. Many of them come from the Synthesis Tool Kit (STK).

pluck(pitch, dur, final-amp) is an extended Karplus-Strong plucked string model. The extension in-
serts a filter into the loop (besides the simple averaging filter we learned about) to allow sub-sample delays needed
for accurate tuning. In addition, the rate of decay can be modified by the optional parameters dur and final-amp.
Increasing either or both parameters lowers the decay rate. You might want to multiply by an envelope to avoid a
click at the end if the final-amp is high.

clarinet(step, breath-env) is abasic STK clarinet model. There are several variations on this model in
Nyquist that allow continuous control over frequency, breath envelope, vibrato, reed-stiffness, and noise through
additonal parameters. See the Nyquist Reference Manual for details.

sax(step, breath-env) is a basic STK saxophone model (called “saxophony”). As with clarinet, there
are variations with additional parameters.

8 Commuted Synthesis

One of the problems with physical models of guitars, violins, and pianos is that vibrating strings excite a complex
3-dimensional body that is computationally hard to simulate. We can assume that the body is a kind of complex
filter. We can characterize the body by tapping it at the bridge or point where the string is attached and measuring
the impulse response.

Now, one way to model the body is to simply convolve the string force with the body’s impulse response. In
other words we just filter the string with the body filter and we are done. But convolution is expensive, so researchers
thought of another approach.

Consider a piano model with a hammer model that transmits force to a string model, the string model transmits
force to a bridge, and the body model filters the bridge force to obtain an output. Now, the string and body are
both just filters! Multiplication and convolution and linear filters are all commutative (it’s all more-or-less the
same thing), so we can switch the order of the string and body filters. This makes no sense physically, but in our
simulation, instead of driving the string with an impulse (as if hit by a hammer), we can drive the string with the
impulse response of the body! Thus, for every note, we just have to “play” the impulse response into the string
model, saving the need for a complex body filter on the output.

For strings, the commuted synthesis model is a little more complex because the bow is repeatedly pumping
energy into the string. We need to run a bowed string model to detect when the bow slip occurs. Then, we treat that
as the driving impulse, and every time the bow slips, we drive a second string model with the violin body impulse
response. We take the output from this second string model.

9 Electric Guitar Model

Charles R. Sullivan developed an interesting guitar model®. His work was motivated more by obtaining usable
control than by being a faithful model.

The basic model is shown in Figure 11, and you can see that this is closely related to the Karplus-Strong model.
The low-pass filter determines the decay rate of the string and can also change the effective length (and frequency)
of the string by inserting additional delay. In this model, an FIR filter is used:

Yn = QoXp +a1Xp—1 + a2Xy—2

but this potentially has gain at zero Hz (DC).

2Charles R. Sullivan, “Extending the KarplusStrong Algorithm to Synthesize Electric Guitar Timbres with Distortion and Feedback.” Com-
puter Music Journal, Vol. 14, No. 3, Fall 1990.

) >

input output

low-pass .
ﬁlti.r_l(_ delay line F——-

Figure 11: Electric Guitar Model by Charles R. Sullivan. The model is based on Karplus-Strong, but the low-pass
filter is customized and the model allows continuous input through the summation node to allow for plucking while
the string is still vibrating and feedback.

9.1 Loop Filter Design

To eliminate DC, we can add a high-pass filter:
Yn = X+ a1Xp—1 +b1yn—1
We also want to provide continuous tuning, for which we need a sub-sample delay. Simple linear interpolation:
Yn = CoXp + C1Xp—1

can be used, but this also produces attenuation (low-pass filter), so we can adjust the loop filter (FIR) to provide
only the additional attenuation required.

After all this, the model is still not perfect and might require a compensating boost at higher frequencies, but
Sullivan decided to ignore this problem: Sometimes higher frequencies will suffer, but the model is workable.

9.2 Tuning and Glissandi

For tuning, we can just round the desired delay length to an integer number of samples and use interpolation to add
the remaining fractional length. To achieve glissando, where the pitch changes continuously, we slowly change cy,
c1 in the interpolator. When one coefficient reaches 1, we can change the delay length by 1, flip ¢y, c1, and there is
no glitch, but we are ready to continue the glissando.

However, changing the loop length will require a change in the loop FIR filter. It is expensive to recalculate all
the filters every sample, so Sullivan updates the filters once per period. There may be small artifacts, but these will
generate harmonics that are masked by the string harmonics.

9.3 Distortion

In electric guitars, distortion of a single note just adds harmonics, but distortion of a sum of notes is not the sum of
distorted notes: distortion is not linear, so all those nice properties of linearity do not apply here.

Sullivan creates distortion using a soft clipping function so that as amplitude increases, there is a gradual intro-
duction of non-linear distortion. The signal is x and the distorted signal is F(x) in the following equation, which is
plotted in Figure 12:
x>1

—% —-1<x<1

Output (arbitrary units) Output (arbitrary units)
0.5 0.5 1
-1.5 -1 -0.5 0.5 1. 15 -1.5 -1. -0.5 0.5 1.
=057 —-0.51
! Input {arbitrary units) o Input {arbitrary unit

Figure 12: Distortion functions. At left is “hard clipping” where the signal is unaffected until it reaches limits of 1
and -1, at which points the signal is limited to those values. At right is a “soft clipping” distortion that is more like
analog amplifiers with limited output range. The amplification is very linear for small amplitudes, but diminishes
as the signal approaches the limits of 1 and -1.

9.4 Feedback

A wonderful technique available to electric guitarists is feedback, where the amplified signal is coupled back to the
strings which then resonate in a sustained manner. Figure 13 illustrates Sullivan’s configuration for feedback. There
are many parameters to control gain and delay. Sullivan notes that one of the interesting things about synthesizing
guitar sounds with feedback is that even though it is hard to predict exactly what will happen, once you find
parameter settings that work, the sounds are very reproducible. One guiding principle is that the instrument will
tend to feedback at periods that are multiples of the feedback delay. This is quite different from real feedback
with real guitars, where the player must interact with the amplifier and guitar, and particular sounds are hard to
reproduce.

preamp feedback delay
power amp

sound from speaker

excites strings ((

pre-distortion feedback

speaker

% pre-distortion %

output level distorted
output level

¢

output

Figure 13: Feedback is achieved by feeding some of the output through a delay and back into each string model.

10

9.5 Initializing the String

When plucking a guitar string in this model, how should we initialize the string? In the Karplus-Strong model,
strings are just initialized with random numbers, but this is not necessary, and it can be more interesting to simulate
plucking as displacing the string at a particular point and releasing it. Plucking closer to the end of the string
gives a brighter sound (try it if you have a guitar)! Figure 14 (a) shows the desired geometry of the initial string
configuration. In the light of what we know about waveguides, this initial position must be split as right- and left-
going waves as shown in Figure 14 (b). If there is a single delay (as in Karplus-Strong), we need to concatenate the
right- and left-going wave configurations, resulting in an initial value as shown in Figure 14 (c).

(a)

initial I/\
displacement

of string

distance from end of string

(b)

wave travelling right

I—-——)

filters

[

negative of wave travelling left

filters

T

Figure 14: Initializing the string. The physical string shape (a) contains both left- and right-going waves (b), so we
need to combine them to get a full round-trip initial waveform (c).

9.6 Additional Features

Sullivan’s electric guitar model is interesting because it shows how models can be extended incrementally to incor-
porate various features, either for study or for additional sound generation and control. There are still more things
one could do with this model, including:

11

e Adding guitar body resonances,
e Coloration and distortion of guitar amplifiers,
e Effects processors, including:

— Distortion,
— Wah-wah pedals,

— Chorus, etc.

10 Analysis Example

One of the challenges of physical models is that we need many parameters to make the model behave like real
acoustic instruments. In some cases, parameters are obtained by trial-and-error, or else calculated, e.g. given a
desired pitch, we can calculate the length of a waveguide.

However, it is interesting to estimate parameters from real sounds, and doing this enables us to check on whether
the model is really capturing the behavior of the acoustic instrument. We present an example of the analysis
of acoustic guitar sounds to estimate physical model parameters. This example should give some idea of how
parameter estimation can be approached. The word estimation should be emphasized—we rarely get the chance to
measure anything exactly or directly.

In Figure 15, we see a plot of the amplitudes of harmonics of a plucked guitar string as they decay over time.
Since decay is mainly due to losses as the wave travels up and down the string, we can fit lines to the curves and
estimate the loss as a function of frequency. (Note that the decay should be exponential, so by plotting on a dB (log)
scale, the decays appear as straight lines.)

After measuring the decay at different frequencies, we can fit a filter to the data, as shown in the lower half of
the figure. If the filter is simple as shown, the fit will not be perfect, but measurement errors will tend to average out
and the overall trend of the filter is likely to be well-estimated. Alternatively, one could fit a complex filter exactly to
all the data points, but this would run the risk of “overfitting,” or incorportaing measurement errors into the model.

10.1 Driving Force

Another part of the model we might like to measure is the driving force on the string. After fitting a filter to the string
recording, we can create an inverse filter, apply that to the recording, and end up with a “residual” that represents
the input. Then, we can drive the string model with the residual to get a realistic sound.

11 2D Waveguide Mesh

The 1-dimensional waveguide can be extended to 2 or 3 dimensions. This adds a lot of computation, but allows us
to model plates and drums in the 2-D case, and resonant chambers and wind instruments in the 3-D case.

Figure 16 shows a 2-D waveguide mesh and the modeled propagation of a wave over a surface in work by Van
Duyne and Smith.

12 Summary

Physical models simulate physical systems to create sound digitally. A common approach is to model strings and
bores (in wind instruments) with recirculating delays, and to “lump” the losses in a filter at some point in the
loop. Non-linear elements are added to model how a driving force (a bow or breath) interacts with the wave in the
recirculating delay to sustain an oscillation. Digital waveguides offer a simple model that separates the left- and
right-going waves of the medium.

12

80

sE

70+

60}
ssf
s0f
45+
© .
() 100 150 200 250
Time (ms)

Fig. 7 Temporal envelopes of the four lowest har-
monics of a guitar tone and straight lines fits.
The amplitude scale is in dB.

0981
0.961
0.941-
092+
0.90

2 3 4
Frequency (kHz)

Fig. 8 Estimated magnitude spectrum (circles) and
magnitude response of a 1st-order IIR filter.

Figure 15: Analysis Example, from Karjalainen, Valimaki, and Janosy. “Towards High Quality Sound Synthesis of
the Guitar and String Instruments” in Proc. ICMC 1993.

l i I
L1
{85 (S) S
t
, ! ,
D O) s § .——
i
L §
——s D S\ s s
DamaO s S S
|
—4———\9—4—»—(3}4-——,5,—«——-« [y s ——
<‘ !
! x

From: Van Duyne and Smith, “Physical
Modeling with the 2-D Digital Waveguide
Mesh,” in Proc. ICMC 1993.

Figure 3. The 2-D Digital Waveguide Mesh

Figure 16: 2D Waveguide Mesh and some some simulation results.

13

12.1 Advantages of Physical Modeling

One advantage of physical models is that non-linear vibrating systems have complex behaviors. Simulations can
create complex and interesting behaviors that tend to arise naturally from models. In spite of potentially complex
behavior, physical models tend to have a relatively small set of controls that are meaningful and intuitively connected
to real-world phenomena and experience. Models also tend to be modular. It is easy to add coupling between strings,
refine a loop filter, etc. to obtain better sound quality or test theories about how instruments work.

12.2 Disadvantages of Physical Models

On the other hand, the real 3-D world resists simplifications. For example, violin bodies are very complex and
perceptually important. When simplifications break down, physical model computation becomes very high. For
example, there are experiments using 3-D waveguides models of brass instruments that run on supercomputers
much slower than real time.

Control is also difficult. Just as real instruments require great skill and practice, we should not expect simple
inputs will immediately result in great sounds. It is difficult to invert recorded sounds to determine the control
required to produce them. Consider all the muscles and motions involved in playing the violin or trumpet, or the
fact that it takes years to become an accomplished performer on these instruments. One answer to this problem is
that physical models should form the basis of new instruments that can be controlled in real-time by humans. These
instruments might be as difficult to play as acoustic instruments, but they might have interesting new sounds and
capabilities.

13 Acknowledgments

Thanks to Shuqi Dai and Sai Samarth for editing assistance.

Portions of this work are taken almost verbatim from Music and Computers, A Theoretical and Historical
Approach (http://sites.music.columbia.edu/cmc/MusicAndComputers/) by Phil Burk, Larry Polansky,
Douglas Repetto, Mary Robert, and Dan Rockmore. Other portions are taken almost verbatim from Introduction
to Computer Music: Volume One (http://www.indiana.edu/"emusic/etext/toc.shtml) by Jeffrey Hass. 1
would like to thank these authors for generously sharing their work and knowledge.

14

http://sites.music.columbia.edu/cmc/MusicAndComputers/
http://www.indiana.edu/~emusic/etext/toc.shtml

	Introduction
	Mass-Spring Model
	Karplus-Strong Plucked String Algorithm
	How a Computer Models a Plucked String with the Karplus-Strong Algorithm
	Averaging and Feedback

	Waveguide Model
	``Lumped'' Filters

	Mechanical Oscillator
	McIntyre, Woodhouse (1979) + Schumacher (1983)
	Smith: Efficient Reed-Bore and Bow-String Mechanisms (ICMC 86)

	Flute Physical Model
	Physical Models in Nyquist
	Commuted Synthesis
	Electric Guitar Model
	Loop Filter Design
	Tuning and Glissandi
	Distortion
	Feedback
	Initializing the String
	Additional Features

	Analysis Example
	Driving Force

	2D Waveguide Mesh
	Summary
	Advantages of Physical Modeling
	Disadvantages of Physical Models

	Acknowledgments

